Transfusion
-
Postinjury fibrinolysis can manifest as three distinguishable phenotypes: 1) hyperfibrinolysis, 2) physiologic, and 3) hypofibrinolysis (shutdown). Hyperfibrinolysis is associated with uncontrolled bleeding due to clot dissolution; whereas, fibrinolysis shutdown is associated with organ dysfunction due to microvascular occlusion. The incidence of fibrinolysis phenotypes at hospital arrival in severely injured patients is: 1) hyperfibrinolysis 18%, physiologic 18%, and shutdown 64%. ⋯ While D-dimer and plasmin antiplasmin (PAP) levels corroborate fibrinolysis, they do not provide real-time assessment of the circulating blood capacity. Our clinical studies indicate that fibrinolysis is a very dynamic process and our experimental work suggests plasma first resuscitation reverses hyperfibrinolysis. Collectively, we believe recent clinical and experimental work suggest antifibrinolytic therapy should be employed selectively in the acutely injured patient, and optimally guided by TEG or ROTEM.
-
Hemorrhagic shock is both a local and systemic disorder. In the context of systemic effects, blood loss may lead to levels of reduced oxygen delivery (DO2 ) sufficient to cause tissue ischemia. Similar to other physiologic debts such as sleep, it is not possible to incur a significant oxygen debt and suffer no consequences for lack of timely repayment. ⋯ At last, this article recognizes the need for simple and durable, lightweight equipment that can detect the adequacy of tissue DO2 and thus patient needs for resuscitative care. Point-of-care lactate measuring may be a predictive tool for identifying high-risk trauma patients and occult shock because it provides information beyond that of vital signs and mechanism of injury as it may help predict the level of oxygen debt accumulation and need for resuscitation. Serial measurements may also be valuable as a tool in guiding resuscitative efforts.
-
The concept of remote damage control resuscitation (RDCR) is still in its infancy and there is significant work to be done to improve outcomes for patients with life-threatening bleeding secondary to injury. The prehospital phase of resuscitation is critical and if shock and coagulopathy can be rapidly minimized before hospital admission this will very likely reduce morbidity and mortality. The optimum transfusion strategy for these patients is still highly debated and the potential implications of the recently published pragmatic, randomize, optimal platelet, and plasma ratios trial (PROPPR) for RDCR have been reviewed. ⋯ Handheld point-of-care devices may be able to support and guide the prehospital and remote use of intravenous hemostatic agents including coagulation factor concentrates along with clinical presentation, assessment, and the extent of bleeding. Combinations may even be more effective for bleeding control. More studies are urgently needed.
-
Implications from the pragmatic, randomize, optimal platelet and plasma ratios (PROPPR) trial are critical for remote damage control resuscitation (DCR). Utilizing DCR principals in remote settings can combat early mortality from hemorrhage. Identifying the appropriate transfusion strategy is mandatory prior to adopting prehospital hemostatic resuscitation strategies. ⋯ A balanced resuscitation strategy demonstrates an early survival benefit, decreased death from exsanguination at 24 hours and a greater likelihood of achieving hemostasis in critically injured patients receiving a 1:1:1 ratio of plasma:platelets:PRBCs. This finding highlights the need to import DCR principals to remote locations.