Haematologica
-
Randomized Controlled Trial
A randomized, placebo-controlled trial of arginine therapy for the treatment of children with sickle cell disease hospitalized with vaso-occlusive pain episodes.
Painful episodes of vaso-occlusion are the leading cause of hospitalizations and emergency department visits in sickle cell disease, and are associated with increased mortality. Low nitric oxide bioavailability contributes to vasculopathy in sickle cell disease. Since arginine is the obligate substrate for nitric oxide production, and an acute deficiency is associated with pain, we hypothesized that arginine may be a beneficial treatment for pain related to sickle cell disease. ⋯ A reduction of narcotic use by >50% is remarkable. Arginine is a safe and inexpensive intervention with narcotic-sparing effects that may be a beneficial adjunct to standard therapy for sickle cell-related pain in children. A large multi-center trial is warranted in order to confirm these observations.
-
Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. ⋯ We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells.
-
Despite therapeutic advances multiple myeloma remains largely incurable, and novel therapeutic concepts are needed. The Hsp90-chaperone is a reasonable therapeutic target, because it maintains oncogenic signaling of multiple deregulated pathways. However, in contrast to promising preclinical results, only limited clinical efficacy has been achieved through pharmacological Hsp90 inhibition. ⋯ In conclusion, Hsp72 and Hsp73 sustain Hsp90-chaperone function and critically contribute to the survival of myeloma cells. Translation of Hsp70 inhibition into the clinic is therefore highly desirable. Treatment with PI3K inhibitors might represent an alternative therapeutic strategy to target Hsp70.