Cell and tissue research
-
Cell and tissue research · Aug 1989
Synaptic regulation of paraventricular arginine vasopressin-containing neurons by neuropeptide Y-containing monoaminergic neurons in rats. Electron-microscopic triple labeling.
Synaptic regulation of arginine vasopressin (AVP)-containing neurons by neuropeptide Y (NPY)-containing monoaminergic neurons was demonstrated in the paraventricular nucleus of the rat hypothalamus. NPY and AVP were immunolabeled in the pre- and the post-embedding procedures, respectively, and monoaminergic fibers were marked by incorporating 5-hydroxydopamine (5-OHDA), a false neurotransmitter. The immunoreaction for NPY was expressed by diaminobenzidine (DAB) chromogen, and that for AVP by gold particles. ⋯ The AVP cell bodies appeared to have synaptic junctions formed by these nerve terminals as well as by the unlabeled nerve terminals which have small clear vesicles and large cored vesicles. These different types of nerve terminals were frequently observed in a closely apposed position on the same AVP cell bodies. The functional relationships of these three types of neuronal terminals are discussed.
-
Cell and tissue research · Jan 1981
Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study.
In addition to ependymal epithelial cells, numerous tanycytes are found along the entire central canal of the mouse. These tanycytes are arranged in clusters in the cervical, thoracic and lumbar segments of the spinal cord. In the conus medullaris, tanycytes separate and ensheath bundles of myelinated and unmyelinated axons; their processes take part in the formation of the stratum marginale gliae. ⋯ The meninges consist of the intima piae, the pia mater, the arachnoid, a subdural neurothelium and the dura mater. The subarachnoid space appears occluded and opens only around the spinal roots. In the vicinity of the spinal ganglia, the dura mater, the subdural neurothelium and the arachnoid form a cellular reticulum.
-
Cell and tissue research · Nov 1979
Scanning electron microscopy of the wall of the third ventricle in the brain of Rana temporaria. Part IV.
The surface specializations of the wall of the third cerebral ventricle of Rana temporaria were investigated with the scanning electron microscope. These specializations can be divided into three types: cilia, large bulbous protrusions, and microvillus-like protrusions. Most parts of the ventricular surface are densely ciliated. ⋯ In the third ventricle of Rana, microvillus-like surface specializations of ependymal cells are ubiquitous structures. Generally, filiform protrusions of varying length are the predominant type. The microvillus-like specializations are transient structures, the number of which varies according to different physiological states of the ependymal cells.
-
Cell and tissue research · Sep 1978
Ependyma and ependymal protrusions of the lateral ventricles of the rabbit brain.
The ependymal lining of the lateral ventricles of the rabbit brain was studied by means of scanning (SEM) and transmission electron microscopy (TEM). There exist cells devoid of cilia in the anterior horn over the region of the caudate nucleus, in the inferior horn over the hippocampus and on the opposite side over cortical regions. On the surface of some of these ependymal cells, accumulations of cytoplasmic folds and globules can be found. ⋯ On the ependyma of the caudate nucleus cilia, microvilli, microblebs and supraependymal neuronal cell processes are distributed unevenly over the surface. Within regions where cilia predominate there are cells which are tightly covered with microvilli. A certain direction of the course of the supraependymal neuronal fibers could not be found.
-
Cell and tissue research · Mar 1977
The surface fine structure of the ependymal lining of the lateral ventricle in rats with hereditary hydrocephalus.
The ependyma of the lateral ventricle of rats with hereditary hydrocephalus was studied using scanning electron microscopy. Normal rats from the same litters were used as control animals. The surface morphology of the lateral ventricle of normal rats corresponded to results reported by other authors. ⋯ The surface of the ependymal cells was flattened and contained small, irregular projections. The number of large supraependymal cells, regarded as neurons, appeared to have diminished in the hydrocephalic rats. The number of supraependymal macrophages was greatly increased in these rats, suggesting the existence of an ependymitis.