Annals of translational medicine
-
In acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) patients, spontaneous breathing is associated with multiple physiologic benefits: it prevents muscles atrophy, avoids paralysis, decreases sedation needs and is associated with improved hemodynamics. On the other hand, in the presence of uncontrolled inspiratory effort, severe lung injury and asynchronies, spontaneous ventilation might also worsen lung edema, induce diaphragm dysfunction and lead to muscles exhaustion and prolonged weaning. In the present review article, we present physiologic mechanisms driving spontaneous breathing, with emphasis on how to implement basic and advanced respiratory monitoring to assess lung protection during spontaneous assisted ventilation. ⋯ In summary, early switch to spontaneous assisted breathing of acutely hypoxemic patients is more respectful of physiology and might yield several advantages. Nonetheless, risk of additional lung injury is not completely avoided during spontaneous breathing and careful monitoring of target physiologic variables such as tidal volume (Vt) and driving transpulmonary pressure should be applied routinely. In clinical practice, multiple interventions such as extracorporeal CO2 removal exist to maintain inspiratory effort, Vt and driving transpulmonary pressure within safe limits but more studies are needed to assess their long-term efficacy.
-
Review
Biomarkers for the acute respiratory distress syndrome: how to make the diagnosis more precise.
The acute respiratory distress syndrome (ARDS) is an acute inflammatory process of the lung caused by a direct or indirect insult to the alveolar-capillary membrane. Currently, ARDS is diagnosed based on a combination of clinical and physiological variables. The lack of a specific biomarker for ARDS is arguably one of the most important obstacles to progress in developing novel treatments for ARDS. ⋯ In general, these are cell-specific for epithelial or endothelial injury or involved in the inflammatory or infectious response. No biomarker or biomarkers have yet been confirmed for the diagnosis of ARDS or prediction of its prognosis. However, it is anticipated that in the near future, using biomarkers for defining ARDS, or for determining those patients who are more likely to benefit from a given therapy will have a major effect on clinical practice.
-
The rationale for the use of recruitment maneuvers (RMs) in acute respiratory distress syndrome (ARDS) is to promote alveolar recruitment, leading to an increased end-expiratory lung volume and thus decreased ventilator-induced lung injury (VILI). RMs consists of a transient increase in transpulmonary pressure that can re-open previously collapsed alveoli. RMs represents a physiological response to lung aggression in different conditions by re-opening the collapsed part of the lung and decreasing lung oedema. ⋯ Knowledge of physiological determinants is crucial to selecting good levels of pressure and time required to perform an efficient and well-tolerated RM. Identifying ARDS patients who may benefit from RMs is a major issue, depending essentially on the amount of recruitable lung involved. In any case, however, RMs should be done at the early phase of ARDS.
-
Acute respiratory distress syndrome (ARDS) is burdened with significant mortality, mainly in connection with circulatory failure. The right ventricle (RV) is the weak link of hemodynamic stability among ARDS patients and its failure, also named "severe" acute cor pulmonale (ACP), is responsible for excess mortality. Driving pressure ≥18 cmH2O, PaCO2 ≥48 mmHg and PaO2/FiO2 <150 mmHg are three preventable factors recently identified as independently associated with ACP, on which ventilator strategy designed to protect the RV has to focus. This is largely achieved by the use of early and extended sessions of prone positioning (PP) and by daily monitoring of the RV by echocardiography.