Annals of translational medicine
-
Ventilator-associated pneumonia (VAP) is the most frequent nosocomial infection in intensive care units (ICU) and is associated with increased mortality, use of antimicrobials, longer mechanical ventilation, and higher healthcare costs. Lung ultrasonography (LUS) can be used at the bedside and gained widespread acceptance in ICU. Although the visualization of a single LUS sign cannot be considered specific for a diagnosis, clinically-driven LUS examination in particular setting and clinical conditions allow ruling in or out quickly and accurately several causes of acute respiratory failure. ⋯ LUS could ideally represent the decision-making tool for antimicrobial therapy administration in the timeframe of the technical time required for bronchoalveolar lavage analysis. A systematic approach for diagnosis and monitoring of VAP with LUS is also proposed in this review. But specific data on LUS specificity and sensitivity for the diagnosis of VAP are still lacking and should be investigated.
-
The objective of this study was to assess the impact of hyperoxemia on mortality in critically ill patients with ventilator-associated pneumonia (VAP). ⋯ Hyperoxemia at ICU admission, or during ICU stay, had no significant impact on ICU mortality in critically ill patients with VAP.
-
Microaspiration is a major factor in ventilator-associated pneumonia (VAP) pathophysiology. Subglottic secretion drainage (SSD) aims at reducing its incidence. ⋯ SSD did not reduce the incidence of microaspiration, VAP, VAT or airway colonization in this observational study.
-
A protective ventilation strategy is based on separation of lung and chest wall mechanics and determination of transpulmonary pressure. So far, this has required esophageal pressure measurement, which is cumbersome, rarely used clinically and associated with lack of consensus on the interpretation of measurements. We have developed an alternative method based on a positive end expiratory pressure (PEEP) step procedure where the PEEP-induced change in end-expiratory lung volume is determined by the ventilator pneumotachograph. ⋯ Thus, the most crucial factors of ventilator induced lung injury can be determined by a simple PEEP step procedure. The measurement procedure can be repeated with short intervals, which makes it possible to follow the course of the lung disease closely. By the PEEP step procedure we may also obtain information (decision support) on the mechanical consequences of changes in PEEP and tidal volume performed to improve oxygenation and/or carbon dioxide removal.
-
Mechanical ventilation is a life-saving procedure, which takes over the function of the respiratory muscles while buying time for healing to take place. However, it can also promote or worsen lung injury, so that careful monitoring of respiratory mechanics is suggested to titrate the level of support and avoid injurious pressures and volumes to develop. Standard monitoring includes flow, volume and airway pressure (Paw). ⋯ As a consequence, monitoring of Paw has significant shortcomings. Assessment of esophageal pressure (Pes), as a surrogate for pleural pressure (Ppl), may allow the clinicians to discriminate between the elastic behaviour of the lung and the chest wall, and to calculate the degree of spontaneous respiratory effort. In the present review, the characteristics and limitations of airway and transpulmonary pressure monitoring will be presented; we will highlight the different assumptions underlying the various methods for measuring transpulmonary pressure (i.e., the elastance-derived and the release-derived method, and the direct measurement), as well as the potential application of transpulmonary pressure assessment during both controlled and spontaneous/assisted mechanical ventilation in critically ill patients.