Annals of translational medicine
-
The objective of this study was to assess the impact of hyperoxemia on mortality in critically ill patients with ventilator-associated pneumonia (VAP). ⋯ Hyperoxemia at ICU admission, or during ICU stay, had no significant impact on ICU mortality in critically ill patients with VAP.
-
Microaspiration is a major factor in ventilator-associated pneumonia (VAP) pathophysiology. Subglottic secretion drainage (SSD) aims at reducing its incidence. ⋯ SSD did not reduce the incidence of microaspiration, VAP, VAT or airway colonization in this observational study.
-
Ventilator-associated pneumonia (VAP) is the most frequent nosocomial infection in intensive care units (ICU) and is associated with increased mortality, use of antimicrobials, longer mechanical ventilation, and higher healthcare costs. Lung ultrasonography (LUS) can be used at the bedside and gained widespread acceptance in ICU. Although the visualization of a single LUS sign cannot be considered specific for a diagnosis, clinically-driven LUS examination in particular setting and clinical conditions allow ruling in or out quickly and accurately several causes of acute respiratory failure. ⋯ LUS could ideally represent the decision-making tool for antimicrobial therapy administration in the timeframe of the technical time required for bronchoalveolar lavage analysis. A systematic approach for diagnosis and monitoring of VAP with LUS is also proposed in this review. But specific data on LUS specificity and sensitivity for the diagnosis of VAP are still lacking and should be investigated.
-
Despite being a promising idea that combines several variables related to ventilator-induced lung injury (VILI), the concept of mechanical power (MP) carries a number of limitations, leaves several open questions, lacks proper modelling of positive end-expiratory pressure (PEEP) effects and, more importantly, does not respect the amount of lung tissue subjected to MP. First, the assessment of MP as a measure for development of VILI would have the highest relevance when volume displacement and related pressure changes are measured directly within the lung. Thus, ideally the relationship between MP delivered to the total respiratory system, and that delivered to lung tissue is discerned. ⋯ Fourth, in its current form, MP is modelled with a positive linear relationship with PEEP, which is based on incorrect mathematical modelling to integrate the role of PEEP into MP. Fifth, the present equation used to calculate MP is qualitatively in disagreement with clinical data on VILI. The reduction of MP to its elastic part, might not only result in a higher association with VILI, but also amplifies an indirect U-shaped relationship with PEEP.
-
Mechanical ventilation is a life-saving procedure, which takes over the function of the respiratory muscles while buying time for healing to take place. However, it can also promote or worsen lung injury, so that careful monitoring of respiratory mechanics is suggested to titrate the level of support and avoid injurious pressures and volumes to develop. Standard monitoring includes flow, volume and airway pressure (Paw). ⋯ As a consequence, monitoring of Paw has significant shortcomings. Assessment of esophageal pressure (Pes), as a surrogate for pleural pressure (Ppl), may allow the clinicians to discriminate between the elastic behaviour of the lung and the chest wall, and to calculate the degree of spontaneous respiratory effort. In the present review, the characteristics and limitations of airway and transpulmonary pressure monitoring will be presented; we will highlight the different assumptions underlying the various methods for measuring transpulmonary pressure (i.e., the elastance-derived and the release-derived method, and the direct measurement), as well as the potential application of transpulmonary pressure assessment during both controlled and spontaneous/assisted mechanical ventilation in critically ill patients.