Annals of translational medicine
-
Acute respiratory distress syndrome (ARDS) is burdened with significant mortality, mainly in connection with circulatory failure. The right ventricle (RV) is the weak link of hemodynamic stability among ARDS patients and its failure, also named "severe" acute cor pulmonale (ACP), is responsible for excess mortality. Driving pressure ≥18 cmH2O, PaCO2 ≥48 mmHg and PaO2/FiO2 <150 mmHg are three preventable factors recently identified as independently associated with ACP, on which ventilator strategy designed to protect the RV has to focus. This is largely achieved by the use of early and extended sessions of prone positioning (PP) and by daily monitoring of the RV by echocardiography.
-
The positive end-expiratory pressure (PEEP), since its introduction in the treatment of acute respiratory failure, up to the 1980s was uniquely aimed to provide a viable oxygenation. Since the first application, a large debate about the criteria for selecting the PEEP levels arose within the scientific community. Lung mechanics, oxygen transport, venous admixture thresholds were all proposed, leading to PEEP recommendations from 5 up to 25 cmH2O. ⋯ In fact, all the other methods estimate as recruitment the gas entry in pulmonary units already open at lower PEEP, but increasing their compliance at higher PEEP. Since higher PEEP is usually more indicated (also for oxygenation) when the recruitability is higher, as occurs with increasing severity, a meaningful PEEP selection requires the assessment of recruitment. The Berlin definition may help in this assessment.
-
In acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) patients, spontaneous breathing is associated with multiple physiologic benefits: it prevents muscles atrophy, avoids paralysis, decreases sedation needs and is associated with improved hemodynamics. On the other hand, in the presence of uncontrolled inspiratory effort, severe lung injury and asynchronies, spontaneous ventilation might also worsen lung edema, induce diaphragm dysfunction and lead to muscles exhaustion and prolonged weaning. In the present review article, we present physiologic mechanisms driving spontaneous breathing, with emphasis on how to implement basic and advanced respiratory monitoring to assess lung protection during spontaneous assisted ventilation. ⋯ In summary, early switch to spontaneous assisted breathing of acutely hypoxemic patients is more respectful of physiology and might yield several advantages. Nonetheless, risk of additional lung injury is not completely avoided during spontaneous breathing and careful monitoring of target physiologic variables such as tidal volume (Vt) and driving transpulmonary pressure should be applied routinely. In clinical practice, multiple interventions such as extracorporeal CO2 removal exist to maintain inspiratory effort, Vt and driving transpulmonary pressure within safe limits but more studies are needed to assess their long-term efficacy.
-
Several factors have been recognized as possible triggers of ventilator-induced lung injury (VILI). The first is pressure (thus the 'barotrauma'), then the volume (hence the 'volutrauma'), finally the cyclic opening-closing of the lung units ('atelectrauma'). Less attention has been paid to the respiratory rate and the flow, although both theoretical considerations and experimental evidence attribute them a significant role in the generation of VILI. ⋯ For the same elastance driving pressure is a predictor similar to plateau pressure or tidal volume. Driving pressure is one of the components of the mechanical power, which also includes respiratory rate, flow and PEEP. Finding the threshold for mechanical power would greatly simplify assessment and prevention of VILI.
-
The rationale for the use of recruitment maneuvers (RMs) in acute respiratory distress syndrome (ARDS) is to promote alveolar recruitment, leading to an increased end-expiratory lung volume and thus decreased ventilator-induced lung injury (VILI). RMs consists of a transient increase in transpulmonary pressure that can re-open previously collapsed alveoli. RMs represents a physiological response to lung aggression in different conditions by re-opening the collapsed part of the lung and decreasing lung oedema. ⋯ Knowledge of physiological determinants is crucial to selecting good levels of pressure and time required to perform an efficient and well-tolerated RM. Identifying ARDS patients who may benefit from RMs is a major issue, depending essentially on the amount of recruitable lung involved. In any case, however, RMs should be done at the early phase of ARDS.