Frontiers in pharmacology
-
Frontiers in pharmacology · Jan 2014
The role of perioperative sodium bicarbonate infusion affecting renal function after cardiothoracic surgery.
Cardiac surgery associated acute kidney injury (CSA-AKI) is associated with poor outcomes including increased mortality, length of hospital stay (LOS) and cost. The incidence of acute kidney injury (AKI) is reported to be between 3 and 30% depending on the definition of AKI. We designed a multicenter randomized controlled trial to test our hypothesis that a perioperative infusion of sodium bicarbonate (SB) during cardiac surgery will attenuate the post-operative rise in creatinine indicating renal injury when compared to a perioperative infusion with normal saline. ⋯ Specifically 14 patients (24%) who received sodium chloride (SC) and 17 patients (27%) who received SB were observed to develop AKI post-surgery, resulting in a relative risk of AKI of 1.1 (95% CI: 0.6-2.1, chi-square p-value = 0.68) for patients receiving SB compared to those who received SC. The data safety monitoring board for the trial recommended closing the study early as there was only a 12% probability that the null hypothesis would be rejected. We therefore concluded that a perioperative infusion of SB failed to attenuate the risk of CSA-AKI.
-
Autophagy was originally described as a highly conserved system for the degradation of cytosol through a lysosome-dependent pathway. In response to starvation, autophagy degrades organelles and proteins to provide metabolites and energy for its pro-survival effects. Autophagy is recognized as playing a role in the pathogenesis of disease either directly or indirectly, through the regulation of vital processes such as programmed cell death, inflammation, and adaptive immune mechanisms. ⋯ Selective autophagy has drawn the attention of researchers because of its potential importance in clinical diseases. Therapeutic strategies to target selective autophagy rather than general autophagy may maximize clinical benefit by enhancing selectivity. In this review, we outline the principle components of selective autophagy processes and their emerging importance in human disease, with an emphasis on pulmonary diseases.
-
Frontiers in pharmacology · Jan 2014
ReviewMultiple policies to enhance prescribing efficiency for established medicines in Europe with a particular focus on demand-side measures: findings and future implications.
The appreciable growth in pharmaceutical expenditure has resulted in multiple initiatives across Europe to lower generic prices and enhance their utilization. However, considerable variation in their use and prices. ⋯ Multiple demand-side measures are needed to influence prescribing patterns. When combined with supply-side measures, activities can realize appreciable savings. Health authorities cannot rely on a "spill over" effect between classes to affect changes in prescribing.
-
Frontiers in pharmacology · Jan 2014
Deleterious effects of maternal ingestion of cocoa upon fetal ductus arteriosus in late pregnancy.
Cocoa powder has twice more antioxidants than red wine and three times more than green tea. Ten percent of its weight is made up of flavonoids. Cocoa has antioxidant and anti-inflammatory effects by downregulating cyclooxigenase-2 receptors expression in the endothelium and enhancing nitric oxide bioavailability. ⋯ Polyphenols present in many foods and their anti-inflammatory and antinociceptive activities have been shown to be as or more powerful than those of indomethacin. These effects are dependent on the inhibition of modulation of the arachidonic acid and the synthesis of prostaglandins, especially E-2, which is responsible for fetal DA patency. So, we hypothesized that this same mechanism is responsible for the harmful effect of polyphenol-rich foods, such as cocoa, upon the fetal DA after maternal intake of such substances in the third trimester of pregnancy, thereby rising the perspective of a note of caution for pregnant women diet.
-
Malaria and iron have a complex but important relationship. Plasmodium proliferation requires iron, both during the clinically silent liver stage of growth and in the disease-associated phase of erythrocyte infection. Precisely how the protozoan acquires its iron from its mammalian host remains unclear, but iron chelators can inhibit pathogen growth in vitro and in animal models. ⋯ Key to understanding the pathophysiology of iron metabolism in malaria is the activity of the iron regulatory hormone hepcidin. Hepcidin is upregulated during blood-stage parasitemia and likely mediates much of the iron redistribution that accompanies disease. Understanding the regulation and role of hepcidin may offer new opportunities to combat malaria and formulate better approaches to treat anemia in the developing world.