Frontiers in pharmacology
-
Frontiers in pharmacology · Jan 2020
ReviewThe Use of Vasopressor Agents in Free Tissue Transfer for Head and Neck Reconstruction: Current Trends and Review of the Literature.
Microvascular free tissue transfer has become essential to head and neck reconstruction and recent advancements in microvascular surgery have led to excellent surgical outcomes. However, there continues to be controversy and a stigma associated with the use of perioperative intravenous vasopressor agents among both surgeons and anesthesiologists. Due to concern for vasoconstriction of peripheral vasculature flowing to the denervated tissue flap, there remains concerns about potential thrombosis, decreased tissue perfusion and ultimately flap failure. This topic becomes even more important as vasopressors play an essential role in new Extended Recovery After Surgery (ERAS) protocols being put in place to optimize postoperative recovery for patients. The purpose of this study was to comprehensively review the role and safety as well as discuss current trends with intraoperative vasopressor agents in free tissue transfer for head and neck reconstruction. ⋯ The administration of vasopressors during microvascular free tissue transfer for head and neck reconstruction does not seem to be associated with increased flap failure rates or other postoperative morbidities. Moreover, vasopressors may provide overall improved hemodynamic stability and help to limit overall fluid administration and subsequent postoperative complications. Additional prospective investigation is warranted to further elucidate and establish evidence-based recommendations regarding the type, timing, and dose of vasopressors to further enhance free flap survival and patient outcomes.
-
Frontiers in pharmacology · Jan 2020
ReviewAnalgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action.
Acetaminophen is one of the most commonly used analgesic agents for treating acute and chronic pain. However, its metabolism is complex, and its analgesic mechanisms have not been completely understood. Previously, it was believed that acetaminophen induces analgesia by inhibiting cyclooxygenase enzymes; however, it has been considered recently that the main analgesic mechanism of acetaminophen is its metabolization to N-acylphenolamine (AM404), which then acts on the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid 1 receptors in the brain. ⋯ However, we also revealed that AM404 induces analgesia via TRPV1 receptors on the spinal dorsal horn in an inflammatory pain rat model, and these analgesic effects were stronger in the model than in naïve rats. The purpose of this review was to summarize the previous and new issues related to the analgesic mechanisms of acetaminophen. We believe that it will allow clinicians to consider new pain management techniques involving acetaminophen.
-
Frontiers in pharmacology · Jan 2020
ReviewCOVID-19 Outbreak: Pathogenesis, Current Therapies, and Potentials for Future Management.
At the end of 2019, a novel coronavirus (CoV) was found at the seafood market of Hubei province in Wuhan, China, and this virus was officially named coronavirus diseases 2019 (COVID-19) by World Health Organization (WHO). COVID-19 is mainly characterized by severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) and creates public health concerns as well as significant threats to the economy around the world. ⋯ In this review, we try to find out the etiology, epidemiology, symptoms as well as transmissions of this novel virus. We also summarize therapeutic interventions and suggest antiviral treatments, immune-enhancing candidates, general supplements, and CoV specific treatments that control replication and reproduction of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).
-
Frontiers in pharmacology · Jan 2020
ReviewMolecular Insights Into SARS COV-2 Interaction With Cardiovascular Disease: Role of RAAS and MAPK Signaling.
In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). ⋯ Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.
-
Frontiers in pharmacology · Jan 2020
ReviewPimavanserin: A Novel Antipsychotic With Potentials to Address an Unmet Need of Older Adults With Dementia-Related Psychosis.
Dementia affects more than 40 million people worldwide. When it is accompanied by psychosis, symptom management is especially challenging. Although no drug has been approved by the US Food and Drug Administration (FDA) for psychosis in patients with dementia, atypical antipsychotics are used off-label in severe cases in patients who do not respond to non-pharmacological interventions. ⋯ Topline result of the pivotal phase III HARMONY (NCT03325556) trial suggests that pimavanserin reduces the relapse of psychosis by 2.8-folds compared to placebo. This favorable result may open path for the potential approval of pimavanserin in DRP. In this review, we discuss the pharmacological activity, clinical efficacy and safety of pimavanserin as a novel atypical antipsychotic with potentials to address the unmet needs of older adults with DRP.