Neural plasticity
-
Children with autism spectrum disorders (ASD) often display an abnormal reactivity to tactile stimuli, altered pain perception, and lower motor skills than healthy children. Nevertheless, these motor and sensory deficits have been mostly assessed by using clinical observation and self-report questionnaires. The present study aims to explore somatosensory and motor function in children with ASD by using standardized and objective testing procedures. ⋯ Increased pain sensitivity and increased touch sensitivity in areas classically related to affective touch (C-tactile afferents innervated areas) may explain typical avoiding behaviors associated with hypersensitivity. Both sensory and motor impairments should be assessed and treated in children with ASD.
-
Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. ⋯ Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.
-
Randomized Controlled Trial Clinical Trial
Lithium and Valproate Levels Do Not Correlate with Ketamine's Antidepressant Efficacy in Treatment-Resistant Bipolar Depression.
Ketamine and lithium both inhibit glycogen synthase kinase 3. In addition, lithium and ketamine have synergistic antidepressant-like effects at individually subeffective doses in rodents. We hypothesized that ketamine's antidepressant effects would be improved by therapeutic doses of lithium versus valproate and that serum lithium levels would positively correlate with ketamine's antidepressant efficacy. ⋯ Both lithium (F 1,118 = 152.08, p < 0.001, and d = 2.27) and valproate (F 1,128 = 20.12, p < 0.001, and d = 0.79) significantly improved depressive symptoms, but no statistically significant difference was observed between mood stabilizer groups (F 1,28 = 2.51, p = 0.12, and d = 0.60). Serum lithium and valproate levels did not correlate with ketamine's antidepressant efficacy. Although the study was potentially underpowered, our results suggest that lithium may not potentiate ketamine's antidepressant efficacy in treatment-resistant bipolar depression.
-
The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ), has been known to maintain the long-term potentiation. ⋯ The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain.
-
Sativex is an emergent treatment option for spasticity in patients affected by multiple sclerosis (MS). This oromucosal spray, acting as a partial agonist at cannabinoid receptors, may modulate the balance between excitatory and inhibitory neurotransmitters, leading to muscle relaxation that is in turn responsible for spasticity improvement. Nevertheless, since the clinical assessment may not be sensitive enough to detect spasticity changes, other more objective tools should be tested to better define the real drug effect. ⋯ The same assessment was applied before and after one month of continuous treatment. Our data showed an increase of intracortical inhibition, a significant reduction of spinal excitability, and an improvement in spasticity and associated symptoms. Thus, we can speculate that Sativex could be effective in reducing spasticity by means of a double effect on intracortical and spinal excitability.