Pediatric research
-
Increasing positive end-expiratory pressure (PEEP) is advocated to recruit alveoli during high-frequency jet ventilation (HFJV), but its effect on cardiopulmonary physiology and lung injury is poorly documented. We hypothesized that high PEEP would recruit alveoli and reduce lung injury but compromise pulmonary blood flow (PBF). Preterm lambs of anesthetized ewes were instrumented, intubated, and delivered by cesarean section after instillation of surfactant. ⋯ PEEPadj lambs had lower pressure amplitude, fractional inspired oxygen concentration, oxygenation index, and PBF and more compliant lungs. Inflammatory markers were lower in the PEEPadj group. Adjusted PEEP during HFJV improves oxygenation and lung compliance and reduces ventilator requirements despite reducing pulmonary perfusion.
-
Severe hypoxic-ischemic encephalopathy (HIE) is a devastating condition that can lead to mortality and long-term disabilities in term newborns. No rapid and reliable laboratory test exists to assess the degree of neuronal injury in these patients. We propose two possible biomarkers: 1) phosphorylated axonal neurofilament heavy chain (pNF-H) protein, one of the major subunits of neurofilaments, found only in axonal cytoskeleton of neurons and 2) Ubiquitin C-terminal hydrolase 1 (UCHL1 protein) that is heavily and specifically concentrated in neuronal perikarya and dendrites. ⋯ UCHL1 and pNF-H serum levels were higher in HIE versus controls. UCHL1 showed correlation with the 10-min Apgar score, and pNF-H showed correlation with abnormal brain MRI. Our findings suggest that serum UCHL1 and pNF-H could be explored as diagnostic and prognostic tools in neonatal HIE.
-
We have developed two devices: a high-amplitude bubble continuous positive airway pressure (HAB-CPAP) and an inexpensive bubble intermittent mandatory ventilator (B-IMV) to test the hypotheses that simple, inexpensive devices can provide gas exchange similar to that of bubble CPAP (B-CPAP) and conventional mechanical ventilation (CMV). Twelve paralyzed juvenile rabbits were intubated, stabilized on CMV, and then switched to CPAP. On identical mean airway pressures (MAPs), animals were unable to maintain pulse oximeter oxygen saturation (SpO2) >80% on conventional B-CPAP, but all animals oxygenated well (97.3 ± 2.1%) on HAB-CPAP. ⋯ In lavaged animals, when HAB-CPAP was compared with CMV at the same MAP and 100% O2, no differences were observed in Pao2, but Paco2 levels were higher with HAB-CPAP (70 ± 7 versus 50 ± 5 mm Hg; p < 0.05). Arterial blood pressures were not impaired by HAB-CPAP or B-IMV. The results confirm that simple inexpensive devices can provide respiratory support in the face of severe lung disease and could extend the use of respiratory support for preterm infants into severely resource-limited settings.
-
Bronchopulmonary dysplasia (BPD) is characterized by arrested alveolar development and complicated by pulmonary hypertension (PH). NO promotes alveolar growth. Inhaled NO (iNO) ameliorates the BPD phenotype in experimental models and in some premature infants. ⋯ Increased lung arginase (ARG) activity in O2-exposed pups was reversed by L-citrulline treatment. L-citrulline supplementation prevents hyperoxia-induced lung injury and PH in newborn rats. L-citrulline may represent a novel therapeutic alternative to iNO for prevention of BPD.
-
Premature infants are subjected to adverse effects of intubation to benefit from surfactant. We hypothesized that administration of surfactant through a laryngeal mask airway (LMA) is as effective as administration through an endotracheal tube (ETT) and that time and physiologic changes during instrumentation will be less in the LMA group. This study is a randomized, controlled trial using newborn pigs. ⋯ Placement of the device required less time and fewer attempts. These data suggest that further study in human neonates is justified. If proven effective, some infants with respiratory distress may be able to receive surfactant while avoiding intubation.