Physiological reports
-
Physiological reports · Jul 2017
Autologous minced muscle grafts improve endogenous fracture healing and muscle strength after musculoskeletal trauma.
The deleterious impact of concomitant muscle injury on fracture healing and limb function is commonly considered part of the natural sequela of orthopedic trauma. Recent reports suggest that heightened inflammation in the surrounding traumatized musculature is a primary determinant of fracture healing. ⋯ The most salient findings of the study were: (1) tibialis anterior (TA) muscle repair with GRAFT improved endogenous healing of fractured tibia and improved the functional outcome of muscle regeneration; (2) GRAFT repair attenuated the monocyte/macrophage (CD45+CDllb+) and T lymphocyte (CD3+) response to VML injury; (3) TA muscle protein concentrations of MCP1, IL-10, and IGF-1 were augmented in a proregenerative manner by GRAFT repair; (4) VML injury concomitant with osteotomy induced a heightened systemic presence of alarmins (e.g., soluble RAGE) and leukocytes (e.g., monocytes), and depressed IGF-1 concentration, which GRAFT repair ameliorated. Collectively, these data indicate that repair of VML injury with a regenerative therapy can modulate the inflammatory and regenerative phenotype of the treated muscle and in association improve musculoskeletal healing.
-
Physiological reports · Jun 2017
Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients.
Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. ⋯ Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures.
-
Physiological reports · Apr 2017
Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease.
Chronic thromboembolic disease (CTED) is suboptimally defined by a mean pulmonary artery pressure (mPAP) <25 mmHg at rest in patients that remain symptomatic from chronic pulmonary artery thrombi. To improve identification of right ventricular (RV) pathology in patients with thromboembolic obstruction, we hypothesized that the RV ventriculo-arterial (Ees/Ea) coupling ratio at maximal stroke work (Ees/Eamax sw) derived from an animal model of pulmonary obstruction may be used to identify occult RV dysfunction (low Ees/Ea) or residual RV energetic reserve (high Ees/Ea). Eighteen open chested pigs had conductance catheter RV pressure-volume (PV)-loops recorded during PA snare to determine Ees/Eamax sw This was then applied to 10 patients with chronic thromboembolic pulmonary hypertension (CTEPH) and ten patients with CTED, also assessed by RV conductance catheter and cardiopulmonary exercise testing. ⋯ Lower Ees/Ea in CTED also correlated with reduced exercise ventilatory efficiency. Low Ees/Ea aligns with features of RV maladaptation in CTED both at rest and on exercise. Characterization of Ees/Ea in CTED may allow for better identification of occult RV dysfunction.
-
Physiological reports · Apr 2017
The coherence of macrocirculation, microcirculation, and tissue metabolic response during nontraumatic hemorrhagic shock in swine.
Hemorrhagic shock is clinically observed as changes in macrocirculatory indices, while its main pathological constituent is cellular asphyxia due to microcirculatory alterations. The coherence between macro- and microcirculatory changes in different shock states has been questioned. This also applies to the hemorrhagic shock. ⋯ After retransfusion, all variables were normalized and remained same throughout the study period. We find in our nontraumatic model consistent coherence between changes in macrocirculatory indices, microcirculatory blood flow, and tissue metabolic response during hemorrhagic shock and retransfusion. This indicates that severe, but brief, hemorrhage with minimal tissue injury is in itself not sufficient to cause lack of coherence between macro- and microcirculation.
-
Physiological reports · Apr 2017
Effect of thoracic epidural anesthesia on heart rate variability in a porcine model.
Heart rate variability (HRV) is increasingly recognized as a means of evaluating autonomic tone. Thoracic epidural anesthesia (TEA) has been previously demonstrated to suppress the electrical storms in patients. However, the effect of TEA on HRV during sympathoexcitation remains unknown. ⋯ LSS significantly increased low-frequency normalized units (LF: 44.9 ± 6.7 vs. 13.6 ± 3.1 msec2 baseline, P < 0.05) and decreased high-frequency normalized units (HF: 11.5 ± 4.6 vs. 41.9 ± 5.1 msec2 baseline, P < 0.05). As a result, LF/HF significantly increased from 0.3 ± 0.2 to 3.9 ± 1.4 during LSS TEA significantly attenuated the LF/HF from 3.9 ± 1.4 to 1.6 ± 0.8 with increased HF components from 11.5 ± 4.6 to 26.5 ± 3.2 msec2 LF component significantly correlates with global ARI (r = -0.81) and dispersion of repolarization (r = 0.85). HRV can precisely reflect the cardiac autonomic tone and TEA modulates the HRV by enhancing the HF components probably through a parasympathetic nerve system.