Biochemical pharmacology
-
Biochemical pharmacology · Apr 2012
Interplay of sorbitol pathway of glucose metabolism, 12/15-lipoxygenase, and mitogen-activated protein kinases in the pathogenesis of diabetic peripheral neuropathy.
The interactions among multiple pathogenetic mechanisms of diabetic peripheral neuropathy largely remain unexplored. Increased activity of aldose reductase, the first enzyme of the sorbitol pathway, leads to accumulation of cytosolic Ca²⁺, essentially required for 12/15-lipoxygenase activation. The latter, in turn, causes oxidative-nitrosative stress, an important trigger of mitogen activated protein kinase (MAPK) phosphorylation. ⋯ Fidarestat treatment did not affect diabetes-induced increase in glucose concentrations, but normalized sorbitol and fructose concentrations (enzymatic spectrofluorometric assays) as well as 12(S)-hydroxyeicosatetraenoic concentration (ELISA), a measure of 12/15-lipoxygenase activity, in the sciatic nerve and spinal cord. 12/15-lipoxygenase expression in these two tissues (Western blot analysis) as well as dorsal root ganglia (immunohistochemistry) was similarly elevated in untreated and fidarestat-treated diabetic mice. 12/15-Lipoxygenase gene deficiency prevented diabetes-associated p38 MAPK and ERK, but not SAPK/JNK, activation in the sciatic nerve (Western blot analysis) and all three MAPK activation in the dorsal root ganglia (immunohistochemistry). In contrast, spinal cord p38 MAPK, ERK, and SAPK/JNK were similarly activated in diabetic wild-type and 12/15-lipoxygenase⁻/⁻ mice. These findings identify the nature and tissue specificity of interactions among three major mechanisms of diabetic peripheral neuropathy, and suggest that combination treatments, rather than monotherapies, can sometimes be an optimal choice for its management.
-
Biochemical pharmacology · Feb 2012
Euphol prevents experimental autoimmune encephalomyelitis in mice: evidence for the underlying mechanisms.
Multiple sclerosis (MS) is a severe chronic T cell-mediated autoimmune inflammatory disease of the central nervous system (CNS), the existing therapy of which is only partially effective and is associated with undesirable side effects. Euphol, an alcohol tetracyclic triterpene, has a wide range of pharmacological properties and is considered to have anti-inflammatory action. However there are no reports about the effects and mechanisms of euphol in experimental autoimmune encephalomyelitis (EAE), an established model of MS. ⋯ Likewise, oral euphol treatment inhibited the infiltration of T(H)17 myelin-specific cells into the CNS through the adhesion molecule, lymphocyte function-associated antigen 1 (LFA-1). Our findings reveal that oral administration of euphol consistently reduces and limits the severity and development of EAE. Therefore, euphol might represent a potential molecule of interest for the treatment of MS and other T(H)17 cell-mediated inflammatory diseases.
-
Biochemical pharmacology · Feb 2012
Comparative StudyA-1048400 is a novel, orally active, state-dependent neuronal calcium channel blocker that produces dose-dependent antinociception without altering hemodynamic function in rats.
Blockade of voltage-gated Ca²⁺ channels on sensory nerves attenuates neurotransmitter release and membrane hyperexcitability associated with chronic pain states. Identification of small molecule Ca²⁺ channel blockers that produce significant antinociception in the absence of deleterious hemodynamic effects has been challenging. In this report, two novel structurally related compounds, A-686085 and A-1048400, were identified that potently block N-type (IC₅₀=0.8 μM and 1.4 μM, respectively) and T-type (IC₅₀=4.6 μM and 1.2 μM, respectively) Ca²⁺ channels in FLIPR based Ca²⁺ flux assays. ⋯ In other experimental pain models, A-1048400 dose-dependently attenuated nociceptive, neuropathic and inflammatory pain at doses that did not alter psychomotor or hemodynamic function. The identification of A-1048400 provides further evidence that voltage-dependent inhibition of neuronal Ca²⁺ channels coupled with pharmacological selectivity vs. L-type Ca²⁺ channels can provide robust antinociception in the absence of deleterious effects on hemodynamic or psychomotor function.
-
Biochemical pharmacology · Jan 2012
Comparative StudyCloning and activity of a novel α-latrotoxin from red-back spider venom.
The venom of the European black widow spider Latrodectus tredecimguttatus (Theridiidae) contains several high molecular mass (110-140 kDa) neurotoxins that induce neurotransmitter exocytosis. These include a vertebrate-specific α-latrotoxin (α-LTX-Lt1a) responsible for the clinical symptoms of latrodectism and numerous insect-specific latroinsectoxins (LITs). In contrast, little is known about the expression of these toxins in other Latrodectus species despite the fact that envenomation by these spiders induces a similar clinical syndrome. ⋯ The deduced amino acid sequence of the mature α-LTX-Lh1a comprises 1180 residues (∼132kDa) with ∼93% sequence identity with α-LTX-Lt1a. α-LTX-Lh1a is composed of an N-terminal domain and a central region containing 22 ankyrin-like repeats. The presence of two furin cleavage sites, conserved with α-LTX-Lt1a, indicates that α-LTX-Lh1a is derived from the proteolytic cleavage of an N-terminal signal peptide and C-terminal propeptide region. However, we show that α-LTX-Lh1a has key substitutions in the 4C4.1 epitope that explains the lack of binding of the monoclonal antibody.
-
Biochemical pharmacology · Dec 2011
3-Hydroxy-2'-methoxy-6-methylflavone: a potent anxiolytic with a unique selectivity profile at GABA(A) receptor subtypes.
Genetic and pharmacological studies have demonstrated that α2- and α4-containing GABA(A) receptors mediate the anxiolytic effects of a number of agents. Flavonoids are a class of ligands that act at GABA(A) receptors and possess anxiolytic effects in vivo. Here we demonstrate that the synthetic flavonoid, 3-hydroxy-2'-methoxy-6-methylflavone (3-OH-2'MeO6MF) potentiates GABA-induced currents at recombinant α1/2β2, α1/2/4/6β1-3γ2L but not α3/5β1-3γ2L receptors expressed in Xenopus oocytes. ⋯ In mice, 3-OH-2'MeO6MF (1-100 mg/kg i.p.) induced anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark paradigms. No sedative or myorelaxant effects were detected using holeboard, actimeter and horizontal wire tests and only weak barbiturate potentiating effects on the loss of righting reflex test. Taken together, these data suggest that 3-OH-2'MeO6MF is an anxiolytic without sedative and myorelaxant effects acting through positive allosteric modulation of the α2β2/3γ2L and direct activation of α4β2/3δ GABA(A) receptor subtypes.