Biochemical pharmacology
-
Biochemical pharmacology · May 2014
Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1.
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in fast synaptic transmission. nAChRs are pentameric receptors formed from a combination of different or similar subunits to produce heteromeric or homomeric channels. The heteromeric, α9α10 nAChR subtype is well-known for its role in the auditory system, being expressed in cochlear hair cells. These nAChRs have also been shown to be involved in immune-modulation. ⋯ These results highlight the difference in the pharmacological profiles of at least two different α9α10 nAChR stoichiometries, possibly (α9)₃(α10)₂ and (α9)₂(α10)₃. As a result, we infer that there is an additional binding site for ACh and Vc1.1 at the α9-α9 interface on the hypothesized (α9)₃(α10)₂ nAChR, in addition to the α10-α9 and or α9-α10 interfaces that are common to both stoichiometries. This study provides further evidence that receptor stoichiometry contributes another layer of complexity in understanding Cys-loop receptors.
-
Biochemical pharmacology · Apr 2014
ReviewBrain metabolic dysfunction at the core of Alzheimer's disease.
Growing evidence supports the concept that Alzheimer's disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. ⋯ Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics.
-
Biochemical pharmacology · Apr 2014
ReviewCommon defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring.
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. ⋯ Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
-
Pharmacokinetics (PK) is the study of the time course of the absorption, distribution, metabolism and excretion (ADME) of a drug, compound or new chemical entity (NCE) after its administration to the body. Following a brief introduction as to why knowledge of the PK properties of an NCE is critical to its selection as a lead candidate in a drug discovery program and/or its use as a functional research tool, the present article presents an overview of PK principles, including practical guidelines for conducting PK studies as well as the equations required for characterizing and understanding the PK of an NCE and its metabolite(s). A review of the determination of in vivo PK parameters by non-compartmental and compartmental methods is followed by a brief overview of allometric scaling. ⋯ The volume of distribution and plasma protein and tissue binding are covered as is the clearance (systemic, hepatic, renal, biliary) of both small and large molecules. A section on metabolite kinetics describes how to estimate the PK parameters of a metabolite following administration of an NCE. Lastly, mathematical models used to describe pharmacodynamics (PD), the relationship between the NCE/compound concentration at the site of action and the resulting effect, are reviewed and linked to PK models in a section on PK/PD.
-
Biochemical pharmacology · Jan 2014
ReviewAnimal models of human disease: challenges in enabling translation.
Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology, target identification, and in the in vivo evaluation of novel therapeutic agents and treatments. In the wake of numerous clinical trial failures of new chemical entities (NCEs) with promising preclinical profiles, animal models in all therapeutic areas have been increasingly criticized for their limited ability to predict NCE efficacy, safety and toxicity in humans. The present review discusses some of the challenges associated with the evaluation and predictive validation of animal models, as well as methodological flaws in both preclinical and clinical study designs that may contribute to the current translational failure rate. ⋯ Additionally, the transparent integration of efficacy and safety data derived from animal models into the hierarchical data sets generated preclinically is essential in order to derive a level of predictive utility consistent with the degree of validation and inherent limitations of current animal models. The predictive value of an animal model is thus only as useful as the context in which it is interpreted. Finally, rather than dismissing animal models as not very useful in the drug discovery process, additional resources, like those successfully used in the preclinical PK assessment used for the selection of lead NCEs, must be focused on improving existing and developing new animal models.