Biomedical sciences instrumentation
-
This study introduces a 3-D segmentation method together with a graphical user interface (GUI) as means to effectively automate the process of segmentation with the ultimate objective of integrating and visualizing diffusion tensor imaging (DTI) with magnetic resonance imaging (MRI) in a fully automated 3-D brain imaging system. A secondary objective is to reduce significantly the segmentation time required to extract key landmarks of the brain in contrast to the manual process currently used at many hospital settings. The results provided will prove this important assertion. ⋯ The average speed of segmentation was just 35 seconds, a reduction of over 20 times of what is required for manual segmentation. In order to create a highly integrated interface, the segmentation results serve as input to a registration algorithm we are currently investigating and whose preliminary results support the significance of relying on an effective segmentation process. T1-weighted 3D Gradient Echo MR and DT images from 16 patients at Miami Children's Hospital were used for evaluation purposes.
-
Comparative Study
Head acceleration is less than 10 percent of helmet acceleration in football impacts.
Sports-related concussions constitute 20 percent of brain injuries each year in the United States. Concussion research has included a variety of instrumentation and techniques to measure head accelerations. Most recently, the Head Impact Telemetry (HIT) System (Simbex, Lebanon, NH), a wireless system that provides real-time data from impacts, is used to measure in-situ head accelerations in collegiate football. ⋯ The impact locations were on the side, back, top and just above the facemask on the front. By comparing these two measured head accelerations and the helmet acceleration during a pendulum impact, it is shown that the response of the head and the helmet vary greatly and the in-helmet system matches the head and not helmet acceleration. Specifically, head acceleration is less than 10 percent of helmet acceleration in football impacts; moreover, the HIT System is able to accurately measure the head acceleration.
-
Translational and rotational accelerations from blunt head impact can induce excessive brain strain and cause traumatic brain injuries. However, it is not clear which acceleration plays a major role in the mechanism. ⋯ Results indicated that rotational acceleration contributes more than 90% of total strain, and translational acceleration produces minimal strain. Therefore, the rotational component is a more important biomechanical metric in this study.
-
The purpose of this study is to develop injury risk functions that predict zygoma fracture based on baseball type and impact velocity. Zygoma fracture strength data from published experiments were mapped with the force exerted by a baseball on the orbit as a function of ball velocity. Using a normal distribution, zygoma fracture risk functions were developed. ⋯ The experimental results validated the zygoma risk functions at the lower and upper levels. The injuries observed in the post test analysis included fractures of the zygomatic arch, frontal process and the maxilla, zygoma suture, with combinations of these creating comminuted, tripod fractures of the zygoma. Tests with a softer baseball did result in injury but these had fewer resulting zygoma bone fragments and occurred at velocities 50% higher than the major league ball.
-
Facial bone fractures in the military can result from direct loading of night vision goggles on the orbital region. Facial fracture research has shown that increasing the area over which the load is applied increases the load tolerance. The purpose of this study is to apply this concept to reducing the risk of facial bone fracture from night vision goggle impacts. ⋯ Two impacts to the male subject with a custom face shield resulted in peak loads of 4554 N and 5101 N with no injury. The final impact to the male subject had a peak load of 2010 N with complete orbital fracture due to the absence of a countermeasure. From these tests it is shown that facial fracture risk from night vision goggle impact can be reduced using a contoured rigid face shield.