Biomedical sciences instrumentation
-
The purpose of this study is to develop injury risk functions that predict zygoma fracture based on baseball type and impact velocity. Zygoma fracture strength data from published experiments were mapped with the force exerted by a baseball on the orbit as a function of ball velocity. Using a normal distribution, zygoma fracture risk functions were developed. ⋯ The experimental results validated the zygoma risk functions at the lower and upper levels. The injuries observed in the post test analysis included fractures of the zygomatic arch, frontal process and the maxilla, zygoma suture, with combinations of these creating comminuted, tripod fractures of the zygoma. Tests with a softer baseball did result in injury but these had fewer resulting zygoma bone fragments and occurred at velocities 50% higher than the major league ball.
-
Previous research has developed a pneumatically driven device for delivering a controlled mechanical insult to cultured neurons. The neuronal cell culture was injured by applying a transient air pulse to a culture well fitted with a highly elastic Silastic culture well bottom. ⋯ The simulation results, using a finite element model of the culture well membrane, compared well with the results from the original experiments. When peak air pressure was varied from 69 kPa to 345 kPa (10 to 50 psig), numerical simulations showed that the corresponding membrane strains varied from 20 to 95% and the stress response varied from 0.5 to 1.2 MPa.
-
The use of sidestream capnometers, with a sampling rate of 150-250 cc/min, as a means of measuring a patient's expired CO2 (ETCO2) and respiratory rate, has been a common practice for many years. However, in recent years, there has been a focus on lower flow rate sampling sidestream systems due to the benefits of less loss of tidal volume for patients, such as infants or neonates. When developing a sidestream system, four principle issues must be considered; 1) The signal fidelity of the gas sample must be sufficiently maintained from the sampling site to the measurement site. 2) Condensate from a patient's breath, as well as blood, mucus, or other contaminates often pose problems for sidestream systems and requires mitigation. 3) The mechanics of transporting a gas sample at a constant flow rate through the sampling system, regardless of atmospheric or clinical conditions must be developed. 4) The physics of handling CO2 gas throughout the transport process must be understood in order to ensure accurate readings. These issues lead to a complex web of interrelations that are explored in the development of a low flow rate sidestream capnometer.
-
Clinical Trial Controlled Clinical Trial
Assessment of heart rate variability during alterations in stress: complex demodulation vs. spectral analysis.
Complex demodulation (CDM) has been proposed as a method for the analysis of high- and low-frequency variabilities of heart rate and blood pressure under non-stationary conditions. In contrast to power spectral analysis, CDM provides time-dependent changes in signal amplitude and frequency on a continuous basis and may yield insights into short-term alterations in autonomic regulation. In particular, CDM may be uniquely suited for quantifying changes in respiratory sinus arrhythmia (RSA) at the onset of acute physical or mental stress conditions. ⋯ Compared to CDM, power spectral analysis results were less informative since they did not allow the disentangling of unique contributions of distinct amplitudes and frequencies at different time points. Our analyses indicate that CDM provides a powerful means of continuously assessing time-dependent changes in RSA during varying physical or mental stress. CDM may also hold promise for a range of physiological and environmental non-steady state conditions where rapid dynamic alterations in autonomic control are likely to occur.
-
Clinical Trial
Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration.
Respiratory sinus arrhythmia (RSA) is a commonly employed non-invasive measure of cardiac vagal control. It has been demonstrated that respiratory parameters such as tidal volume and respiratory frequency can change RSA without altering tonic vagal activity. Thus, within-individual comparisons of cardiac vagal control across different behavioral tasks might benefit from an adjustment for respiratory confounds. ⋯ Factors contributing to a less than perfect correlation included slightly elevated subjective anxiety levels and hyperventilation during paced breathing, both of which may have affected cardiac vagal tone. This study demonstrates a novel procedure for computing a respiratory unrelated RSA index. Results provide some support for the utility of this adjustment method for improving the estimation of cardiac vagal tone from RSA, but also indicate that the paced breathing procedure may need to be further refined.