Hematology
-
High-level production of β-globin, γ-globin, or therapeutic mutant globins in the RBC lineage by hematopoietic stem cell gene therapy ameliorates or cures the hemoglobinopathies sickle cell disease and beta thalassemia, which are major causes of morbidity and mortality worldwide. Considerable efforts have been made in the last 2 decades in devising suitable gene-transfer vectors and protocols to achieve this goal. ⋯ Partial clonal dominance for an intragenic site (HMGA2) of chromosomal integration of the vector was observed in this patient without a loss of hematopoietic homeostasis. Other patients are now receiving transplantations while researchers are carefully weighing the benefit/risk ratio and continuing the development of further modified vectors and protocols to improve outcomes further with respect to safety and efficacy.
-
Multiple and complex abnormalities of hemostasis are revealed by laboratory tests in such common diseases as cirrhosis and end-stage renal insufficiency. Because these abnormalities are associated with a bleeding tendency, a causal relationship is plausible. Accordingly, an array of transfusional and nontransfusional medications that improve or correct these abnormalities is used to prevent or stop hemorrhage. ⋯ Rebalance also occurs for hyperfibrinolysis and platelet abnormalities. These findings are consistent with clinical observations that transfusional and nontransfusional hemostatic medications are of little value as adjuvants to control bleeding in advanced liver disease. Particularly in uremia, but also in cirrhosis, thrombosis is becoming a cogent problem.
-
The maturation and postnatal development of the human coagulation system was first studied and described more than 20 years ago. These older studies, supported by more recent data, confirm the significant and important differences in the physiology of coagulation and fibrinolysis in neonates and young children compared with older children and adults. Subsequently, significant differences were also described in the physiology of primary hemostasis and in global in vitro tests for hemostasis. ⋯ The concept of "neonatal coagulopathy" has an important impact on both the diagnosis and management of hemorrhagic or thrombotic events in neonates. For diagnosis of hemostasis disorders, diagnostic laboratories processing pediatric samples should use age-, analyzer-, and reagent-appropriate reference ranges. Age-specific guidelines should be followed for the management of neonates with hemostatic disorders.
-
The coagulopathy of liver disease in pediatric patients presents an unusual set of challenges. Little pediatric data have been published, so this review is based largely on adult studies. There is a precarious balance between deficiencies of clotting factors and anticoagulation factors in liver disease that result in abnormal prothrombin time (PT) and activated partial thromboplastin time (aPTT) tests that would suggest a bleeding tendency, yet the patients can form a clot and are at risk of thromboembolic disease. Attention has centered on thromboelastography and thrombin-generation assays to clarify the patient's ability to control bleeding, but these tests are not routinely available to many treating physicians.
-
Injury is the leading cause of life years lost in the United States, and uncontrolled hemorrhage is the leading cause of potentially preventable death. Traditionally, these patients have been serially resuscitated with large volumes of crystalloid and/or colloids and red blood cells, followed by smaller amounts of plasma and platelets. Transfusion data coming first from the ongoing war in Iraq and Afghanistan and followed by multiple civilian studies have brought into question this tradition-based practice. ⋯ Although there are strongly held opinions and long-standing traditions in their use, there are little quality data within which to logically guide resuscitation therapy. A multicenter prospective observational study is ongoing, and randomized trials are planned. This review will address the issues raised previously and describe recent trauma patient outcome data utilizing predetermined plasma:platelet:red blood cell transfusion ratios, and possibilities for future transfusion products and research.