Hematology
-
Over the past century, blood banking and transfusion practices have moved from whole blood therapy to components. In trauma patients, the shift to component therapy was achieved without clinically validating which patients needed which blood products. Over the past 4 decades, this lack of clinical validation has led to uncertainty on how to optimally use blood products and has likely resulted in both overuse and underuse in injured patients. ⋯ In addition, studies have shown that resuscitating with plasma (instead of crystalloid) repairs the "endotheliopathy of trauma," or the systemic endothelial injury and dysfunction that lead to coagulation disturbances and inflammation. Data from the Trauma Outcomes Group, the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study, and the ongoing Pragmatic Randomized Optimal Platelet and Plasma Ratios (PROPPR) trial represent a decade-long effort to programmatically determine optimal resuscitation practices, balancing risk versus benefits. With injury as the leading cause of death in patients age 1 to 44 years and hemorrhage the leading cause of potentially preventable death in this group, high-quality data must be obtained to provide superior care to the civilian and combat injured.
-
For 30 years, the Advanced Trauma Life Support course of the American College of Surgeons taught that coagulopathy was a late consequence of resuscitation of injury. The recognition of trauma-induced coagulopathy overturns that medical myth and creates a rationale for procoagulant resuscitation. Analysis of the composition of currently available blood components allows prediction of the upper limits of achievable coagulation activity, keeping in mind that oxygen transport must be maintained simultaneously. ⋯ This means that useful concentrations of the administered products are a hematocrit of 26%, a plasma coagulation factor activity of 62% equivalent to an international normalized ratio of ∼1.2, and a platelet count of 54,000. This means there is essentially no good way to give blood products for resuscitation of trauma-induced coagulopathy other than 1:1:1. Because 50% of trauma patients admitted alive to an academic-level 1 trauma center who will die of uncontrolled hemorrhage will be dead in 2 hours, the trauma system must be prepared to deliver plasma- and platelet-based resuscitation at all times.
-
The identification and management of coagulopathy is a critical component of caring for the severely injured patient. Notions of the mechanisms of coagulopathy in trauma patients have been supplanted by new insights resulting from close examination of the biochemical and cellular changes associated with acute tissue injury and hemorrhagic shock. ⋯ Mechanisms contributing to TIC include anticoagulation, consumption, platelet dysfunction, and hyperfibrinolysis. This review discusses current understanding of TIC mechanisms and their relative contributions to coagulopathy in the face of increasingly severe injury and highlights how they interact to produce coagulation system dysfunction.
-
Pain is the most common cause for hospitalization and acute morbidity in sickle cell disease (SCD). The consequences of SCD-related pain are substantial, affecting both the individual and the health care system. The emergence of the patient-centered medical home (PCMH) provides new opportunities to align efforts to improve SCD management with innovative and potentially cost-effective models of patient-centered care. ⋯ The question for patients, clinicians, scientists, and policy-makers is how the PCMH can be designed to address pain, the hallmark feature of SCD. This article provides a framework of pain management within the PCMH model. We present an overview of pain and pain management in SCD, gaps in pain management, and current care models used by patients and discuss core PCMH concepts and multidisciplinary team-based PCMH care strategies for SCD pain management.
-
What is the correct use of established clotting factors, prothrombin complex concentrates (PCCs), and activated factor VII in bleeding complications of trauma, surgery, and old and new oral anticoagulants? How will new clotting factors, specifically the long-acting factors, change the hemostatic management of coagulation deficiency disorders? From bench to bedside, comparative coagulation studies and clinical trials of modified clotting factors are providing insights to help guide hemostatic management of congenital and acquired bleeding disorders. Comparative thrombin-generation studies and preclinical and clinical trials suggest that PCCs and fresh-frozen plasma are effective in reversing the anticoagulant effects of warfarin, yet there are few data to guide reversal of the new oral anticoagulants dabigatran and rivaroxaban. Although coagulation studies support the use of PCCs to reverse new oral anticoagulants, correlation with clinical response is variable and clinical trials in bleeding patients are needed. ⋯ Data from clinical trials of molecularly modified coagulation factors with extended half-lives suggest the possibility of fewer infusions, reduced bleeds, and better quality of life in persons with hemophilia. Preclinical studies of other novel prohemostatic approaches for hemophilia and other congenital coagulation disorders include RNA interference silencing of antithrombin, monoclonal anti-tissue factor pathway inhibitor (anti-antibody, anti-tissue factor pathway inhibitor) aptamer, bispecific anti-IXa/X antibody, and fucoidans. Understanding the comparative coagulation studies of established prohemostatic agents, the pharmacokinetics of new long-acting clotting factors, and their correlation with bleeding outcomes will provide opportunities to optimize the hemostatic management of both congenital and acquired hemostatic disorders.