Cell reports
-
The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. ⋯ Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.
-
The shortage of donor lungs hinders lung transplantation, the only definitive option for patients with end-stage lung disease. Blastocyst complementation enables the generation of transplantable organs from pluripotent stem cells (PSCs) in animal models. Pancreases and kidneys have been generated from PSCs by blastocyst complementation in rodent models. ⋯ Complementation with ESCs enables Fgf10-deficient mice to survive to adulthood without abnormalities. Both the generated lung alveolar parenchyma and the interstitial portions, including vascular endothelial cells, vascular and parabronchial smooth muscle cells, and connective tissue, largely originate from the injected ESCs. These data suggest that Fgf10 Ex1mut/Ex3mutblastocysts provide an organ niche for lung generation and that blastocyst complementation could be a viable approach for generating whole lungs.
-
The class III phosphoinositide 3-kinase vacuolar protein sorting 34 (VPS34) is a core protein of autophagy initiation, yet the regulatory mechanisms responsible for its stringent control remain poorly understood. Here, we report that the E3 ubiquitin ligase NEDD4-1 promotes the autophagy flux by targeting VPS34. ⋯ Knockout of either NEDD4-1 or USP13 increased K48-linked ubiquitination and degradation of VPS34, thus attenuating the formation of the autophagosome. Our results identify an essential role for NEDD4-1 in regulating autophagy, which provides molecular insights into the mechanisms by which ubiquitination regulates autophagy flux.
-
The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Å crystal structure of human CLCA1 VWA bound to Ca2+. ⋯ Further biophysical studies indicate that CLCA1 VWA is preferably stabilized by Mg2+ over Ca2+ and that α6 atypically extends from the VWA core. Finally, an analysis of TMEM16A structures suggests residues likely to mediate interaction with CLCA1 VWA.
-
Acute kidney injury (AKI) is characterized by mitochondrial dysfunction and activation of the innate immune system. The cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway detects cytosolic DNA and induces innate immunity. ⋯ STING knockdown in cultured tubular cells ameliorates inflammatory responses induced by cisplatin. mtDNA depletion and repletion studies support tubular inflammatory responses via the cGAS-STING signal activation by cytosolic mtDNA. Therefore, we conclude that mitochondrial dysfunction and subsequent activation of the mtDNA-cGAS-STING pathway is a critical regulator of kidney injury.