Neurorehabilitation and neural repair
-
Neurorehabil Neural Repair · Jul 2016
Review Meta AnalysisEffects of Exercise on Falls, Balance, and Gait Ability in Parkinson's Disease: A Meta-analysis.
Postural instability and falls are complex and disabling features of Parkinson's disease (PD) and respond poorly to anti-Parkinsonian medication. There is an imperative need to evaluate the effectiveness of exercise interventions in enhancing postural stability and decreasing falls in the PD population. The objectives of our study were to determine the effects of exercise training on the enhancement of balance and gait ability and reduction in falls for people with PD and to investigate potential factors contributing to the training effects on balance and gait ability of people with PD. ⋯ There was no evidence that training decreased the number of fallers over the short- or long-term (P > .05). The results of our metaregression and subgroup analysis showed that facility-based training produced greater training effects on improving PD participants' balance and gait ability (P < .05). The findings support the application of exercise training to improve balance and gait ability and prevent falls in people with PD.
-
Neurorehabil Neural Repair · Jul 2016
Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.
Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. ⋯ Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI.
-
Neurorehabil Neural Repair · Jul 2016
Responsiveness of the Neuromuscular Recovery Scale During Outpatient Activity-Dependent Rehabilitation for Spinal Cord Injury.
The Neuromuscular Recovery Scale (NRS) was developed by researchers and clinicians to functionally classify people with spinal cord injury (SCI) by measuring functionally relevant motor tasks without compensation. Previous studies established strong interrater and test-retest reliability and validity of the scale. ⋯ The NRS is a responsive measure that detects change in motor function during outpatient neurorehabilitation for SCI. There is potential utility for its application in randomized controlled trials and as a measure of clinical recovery across diverse SCI populations.
-
Neurorehabil Neural Repair · May 2016
Multicenter StudyPredictive Value of Upper Limb Muscles and Grasp Patterns on Functional Outcome in Cervical Spinal Cord Injury.
To determine which single or combined upper limb muscles as defined by the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI); upper extremity motor score (UEMS) and the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP), best predict upper limb function and independence in activities of daily living (ADLs) and to assess the predictive value of qualitative grasp movements (QlG) on upper limb function in individuals with acute tetraplegia. ⋯ Prediction of upper limb function can be achieved through a combination of defined, specific upper limb muscles assessed in the ISNCSCI and GRASSP. A combination of a limited number of proximal and distal muscles along with an assessment of grasping movements can be applied for clinical decision making for rehabilitation interventions and clinical trials.
-
Neurorehabil Neural Repair · Mar 2016
The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex.
Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres. ⋯ In contrast, lesion size had no effect on the contralesional CFA, and there was no relationship between movement representations in the 2 hemispheres. Finally, only the contralesional RFA was negatively correlated with chronic motor deficits of the paretic forelimb. Our data show that lesion size has comparable effects on motor representations in premotor areas of both hemispheres and suggest that the contralesional premotor cortex may play a greater role in the recovery of the paretic forelimb following large lesions.