Journal of personalized medicine
-
An accurate diagnosis of Alzheimer's disease (AD) currently stands as one of the most difficult and challenging in all of clinical neurology. AD is typically diagnosed using an integrated knowledge and assessment of multiple biomarkers and interrelated factors. These include the patient's age, gender and lifestyle, medical and genetic history (both clinical- and family-derived), cognitive, physical, behavioral and geriatric assessment, laboratory examination of multiple AD patient biofluids, especially within the systemic circulation (blood serum) and cerebrospinal fluid (CSF), multiple neuroimaging-modalities of the brain's limbic system and/or retina, followed up in many cases by post-mortem neuropathological examination to finally corroborate the diagnosis. ⋯ While a wealth of genetic, neurobiological, neurochemical, neuropathological, neuroimaging and other diagnostic information obtainable for a single AD patient can be immense: (i) it is currently challenging to integrate and formulate a definitive diagnosis for AD from this multifaceted and multidimensional information; and (ii) these data are unfortunately not directly comparable with the etiopathological patterns of other AD patients even when carefully matched for age, gender, familial genetics, and drug history. Four decades of AD research have repeatedly indicated that diagnostic profiles for AD are reflective of an extremely heterogeneous neurological disorder. This commentary will illuminate the heterogeneity of biomarkers for AD, comment on emerging investigative approaches and discuss why 'precision medicine' is emerging as our best paradigm yet for the most accurate and definitive prediction, diagnosis, and prognosis of this insidious and lethal brain disorder.
-
(1) Background: Genomics and pharmacogenomics are relatively new fields in medicine in the United Arab Emirates (UAE). Understanding the knowledge, attitudes and current practices among pharmacists is an important pillar to establish the roadmap for implementing genomic medicine and pharmacogenomics; (2) Methods: A qualitative method was used, with focus group discussions (FGDs) being conducted among pharmacists working in public and private hospitals in Abu Dhabi Emirate. Snowball sampling was used. ⋯ Pharmacists have a positive attitude toward pharmacogenomics, but they are preoccupied with concern of confidentiality. In addition, religion and culture shadowed their attitudes toward genetic testing; (4) Conclusions: It is highly recommended to introduce new courses and training workshops for healthcare providers to improve the opportunities for genomics and pharmacogenomics application in the UAE. Pharmacists agreed that the health authorities should take the lead for improving trust and confidence in the system for a better future in the era of genomics and pharmacogenomics.
-
Atrial fibrillation (AF) cases are expected to increase over the next several decades, due to the rise in the elderly population. One promising treatment option for AF is catheter ablation, which is increasing in use. We investigated the hospital readmissions data for AF patients undergoing catheter ablation, and used machine learning models to explore the risk factors behind these readmissions. ⋯ Out of the methods used, k-nearest neighbor had the highest prediction accuracy of 85%, closely followed by decision tree, while support vector machine was less desirable for these data. Hospital readmissions for AF with catheter ablation can be predicted with relatively high accuracy, utilizing machine learning methods. As patient age, the total number of hospital discharges, and the total number of patient diagnoses increase, the risk of hospital readmissions increases.
-
Background: Precision medicine represents an evolving approach to improve treatment efficacy by modifying it to individual patient's gene variation. Pharmacogenetics, an applicable branch of precision medicine, identifies patient's predisposing genotypes that alter the clinical outcome of the drug, hence preventing serious adverse drug reactions. Pharmacogenetics has been extensively applied to various fields of medicine, but in the field of anesthesiology and preoperative medicine, it has been unexploited. ⋯ This tool is freely accessible online and can be applied as a web-based search instrument for drug-gene interactions in different fields of medicine, including perioperative medicine. Conclusion: In this research, we collected drug-gene interactions in a web-based searchable tool that could be used by physicians to expand their field knowledge in pharmacogenetics and facilitate their clinical decision making. This precision medicine tool could further serve in establishing a comprehensive perioperative pharmacogenomics database that also includes different fields of medicine that could influence the outcome of perioperative medicine.
-
Low Back Pain (LBP) is a frequent, very common, and costly health problem. LBP, which occurs during pregnancy, may become a lifelong problem. The aim of this study was to determine the risk factors associated with LBP in pregnant women. ⋯ Predisposing factors for LBP in pregnancy are LBP in previous pregnancies, back pain during menstruation, a younger age and a lack of physical activity. Most women in pregnancy with LBP experienced minimal and mild disability.