Pharmacogenomics
-
The identification of predictive markers of response to chemoradiotherapy treatment remains a promising approach for patient management in order to obtain the best response with minor side effects. Initially, we investigated whether the analysis of several markers previously studied and others not yet evaluated could predict response to 5-fluorouracil- and capecitabine-based neoadjuvant treatment in locally advanced rectal cancer. ⋯ The detection of somatic mutations in rectal cancer tumors led us to re-evaluate the utility of the tests performed in blood samples for these polymorphisms in rectal cancer. Furthermore, studies aimed at assessing the influence of pharmacogenetic markers in treatment response performed in blood samples should take into account the particular pattern of hypermutability present in each tumor type. We hypothesize that different patterns of hypermutability present in each tumor type would be related to the different results in association studies related to response to the treatment.
-
Genomic variations influencing response to pharmacotherapy of pain are currently under investigation. Drug-metabolizing enzymes represent a major target of ongoing research in order to identify associations between an individual's drug response and genetic profile. Polymorphisms of the cytochrome P450 enzymes (CYP2D6) influence metabolism of codeine, tramadol, hydrocodone, oxycodone and tricyclic antidepressants. ⋯ Other candidate genes, such as those encoding (opioid) receptors, transporters and other molecules important for pharmacotherapy in pain management, are discussed; however, study results are often equivocal. Besides genetic variants, further variables, for example, age, disease, comorbidity, concomitant medication, organ function as well as patients' compliance, may have an impact on pharmacotherapy and need to be addressed when pain therapists prescribe medication. Although pharmacogenetics as a diagnostic tool has the potential to improve patient therapy, well-designed studies are needed to demonstrate superiority to conventional dosing regimes.
-
Compared with other categories of drugs, such as antibiotics and NSAIDs, antiepileptic therapies are associated with a high incidence of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). We previously reported that carbamazepine (CBZ)-SJS/TEN is strongly associated with the HLA-B*1502 in Han Chinese, which has been confirmed in other Southeast Asian countries where the allele is prevalent. Here, we extend the study of HLA susceptibility to three different antiepileptic drugs, phenytoin (PHT), lamotrigine (LTG) and oxcarbazepine (OXC), which have structure similarity to CBZ. ⋯ Our results indicate that OXC, PHT and LTG, which possess an aromatic ring just as CBZ does, when causing SJS/TEN, share a common risk allele. Aromatic antiepileptic drugs causing SJS/TEN in HLA-B*1502 carriers may act on a similar pathogenetic mechanism, although other genetic/nongenetic factor(s) may also contribute to the pathomechanism of the disease. We suggest that aromatic antiepileptic drugs, including CBZ, OXC and PHT, should be avoided in the B*1502 carrier and caution should also be exercised for LTG.
-
The 1000 Genomes Project aims to provide detailed genetic variation data on over 1000 genomes from worldwide populations using the next-generation sequencing technologies. Some of the samples utilized for the 1000 Genomes Project are the International HapMap samples that are composed of lymphoblastoid cell lines derived from individuals of different world populations. ⋯ Although the coverage of the current HapMap data is generally high, the detailed map of human genetic variation promised by the 1000 Genomes Project will allow a more in-depth analysis of the contribution of genetic variation to drug response. Future studies utilizing this new resource may greatly enhance our understanding of the genetic basis of drug response and other complex traits (e.g., gene expression), therefore, help advance personalized medicine.
-
Randomized Controlled Trial Multicenter Study
Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design.
The narrow therapeutic range and wide interpatient variability in dose requirement make anticoagulation response to coumarin derivatives unpredictable. As a result, patients require frequent monitoring to avert adverse effects and maintain therapeutic efficacy. Polymorphisms in VKORC1 and CYP2C9 jointly account for about 40% of the interindividual variability in dose requirements. ⋯ The European Pharmacogenetics of Anticoagulant Therapy (EU-PACT) trial will assess, in a single-blinded and randomized controlled trial with a follow-up period of 3 months, the safety and clinical utility of genotype-guided dosing in daily practice for the three main coumarin derivatives used in Europe. The primary outcome measure is the percentage time in the therapeutic range for international normalized ratio. This report describes the design and protocol for the trial.