Pharmacogenomics
-
Large interindividual variability in morphine disposition could contribute to unpredictable variability in morphine analgesia and adverse events. Caucasian children have more adverse effects and slower morphine clearance than African-American children. To study variations in intravenous morphine pharmacokinetics in children, we examined the influence of genetic polymorphisms in OCT1. ⋯ Besides bodyweight, OCT1 genotypes play a significant role in intravenous morphine pharmacokinetics. Relatively high allelic frequencies of defective OCT1 variants among Caucasians may explain their lower morphine clearance and possibly higher frequencies of adverse events compared with African-American children. Original submitted 21 December 2012; Revision submitted 7 May 2013.
-
Review Meta Analysis
OPRM1 rs1799971 polymorphism and opioid dependence: evidence from a meta-analysis.
The OPRM1 gene encodes the µ-opioid receptor, which is the primary site of action of most opioids. Several studies and three meta-analyses have examined a possible link between the exonic OPRM1 A118G (rs1799971) polymorphism and opioid dependence; however, results have been inconclusive. ⋯ Our meta-analysis showed significant association between this polymorphism and susceptibility to opioid dependence in overall studies under a codominant model, as well as susceptibility to opioid dependence or heroin dependence in Asians under an autosomal dominant model. The nonsynonymous OPRM1 rs1799971 might be a risk factor for addiction to opioids or heroin in an Asian population.
-
Opioids are the cornerstone of analgesic therapy and are used as a substitution therapy for opiate addiction. Interindividual variability in response to opioids is a significant challenge in the management of pain and substitution. Therefore, treatment with opioids requires a careful individualization of dosage to achieve an appropriate balance of efficacy and adverse effects and, consequently, avoid toxicity, particularly respiratory depression, sedation and for some, cardiac ventricular fibrillations. ⋯ Variants in genes encoding proteins implied in opioid pharmacokinetics (absorption, distribution, metabolism, excretion and toxicity), together with those implied in opioids direct and indirect pharmacodynamics (genes of opioid receptors and monoaminergic systems), are the most studied. Many association studies have not been replicated. The purpose of this article is to summarize pharmacogenetic data associated with some opioids frequently encountered in managed care settings.
-
Given their expertise in pharmacotherapy, pharmacists are well positioned to play a leading role in the implementation of pharmacogenomics in clinical practice. However, little is known about the opinions of pharmacists towards pharmacogenomics or their willingness to integrate this new field in their practice. ⋯ Pharmacists are extremely hopeful towards pharmacogenomic testing. Furthermore, a vast majority is willing to integrate these tests as part of their clinical practice. Proper education will be required if the integration of pharmacogenomics in patient care is to be optimal.
-
Inadequate pain relief and adverse effects from analgesics remain common in children and adults during the perioperative period. Opioids are the most commonly used analgesics in children and adults to treat perioperative pain. Narrow therapeutic index and a large interpatient variability in response to opioids are clinically significant, with inadequate pain relief at one end of the spectrum and serious side effects, such as respiratory depression and excessive sedation due to relative overdosing, at the other end. ⋯ We have reviewed the available evidence on improving and personalizing pain management with opioids and the significance of individualizing analgesia, in order to maximize analgesic effect with minimal adverse effects with opioids. While the early evidence on individual genotype associations with pain, analgesia and opioid adverse outcome are promising, the large amount of conflicting data in the literature suggests that there is a need for larger and more robust studies with appropriate population stratification and consideration of nongenetic and other genetic risk factors. Although the clinical evidence and the prospect of being able to provide point-of-care genotyping to enable clinicians to deliver personalized analgesia for individual patients is still not available, positioning our research to identify all possible major genetic and nongenetic risk factors of an individual patient, advancing less expensive point-of-care genotyping technology and developing easy-to-use personalized clinical decision algorithms will help us to improve current clinical and economic outcomes associated with pain and opioid pain management.