The journal of pain : official journal of the American Pain Society
-
Comparative Study
Sex differences in thermal pain sensitivity and sympathetic reactivity for two strains of rat.
Human females are more sensitive than males to brief nociceptive stimuli such as heat and cold. However, a more pronounced peripheral vasoconstriction by females than by males during prolonged nociceptive stimulation predicts that females would be more sensitive to prolonged cold but not heat stimulation. We tested this possibility with reflex (lick/guard) and operant escape and preference tests of sensitivity to prolonged stimulation of Long-Evans and Sprague-Dawley rats. Escape responses to cold stimulation revealed a greater sensitivity of females. In contrast, males were more sensitive to nociceptive heat stimulation. An operant preference test of relative sensitivity to cold or heat stimulation confirmed these results. Cold was more aversive than heat for females, but heat was more aversive than cold for males. Recordings of skin temperature during nociceptive heat stimulation were consistent with the results of operant testing. A reduction in skin temperature (peripheral vasoconstriction) during nociceptive stimulation should increase cold sensitivity as observed for females relative to males. Lick/guard testing did not confirm the results of operant testing. Lick/guard (L/G) responding to nociceptive heat stimulation was greater for females than for males. Female escape responses to heat were more variable than males, but L/G responding of males to the same stimulus was more variable than for females. ⋯ A variety of chronic pain conditions are more prevalent for females, and psychological stress (with attendant sympathetic activation) is implicated in development and maintenance of these conditions. Therefore, understanding relationships between gender differences in pain sensitivity and sympathetic activation could shed light on mechanisms for some varieties of chronic pain.
-
Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. ⋯ The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting why a mu-opioid agonist may have reduced efficacy in the nerve-injured state. These data present a novel approach to neuropathic pain therapy.
-
To investigate the mechanisms underlying cancer pain, we developed a rat model of cancer pain by inoculating SCC-158 into the rat hind paw, resulting in squamous cell carcinoma, and determined the time course of thermal, mechanical sensitivity, and spontaneous nocifensive behavior in this model. In addition, pharmacological and immunohistochemical studies were performed to examine the role played by transient receptor potential vanilloid (TRPV)1 and TRPV2 expressed in the dorsal root ganglia. Inoculation of SCC-158 induced marked mechanical allodynia, thermal hyperalgesia, and signs of spontaneous nocifensive behavior, which were diminished by systemic morphine administration. Intraplantar administration of the TRPV1 antagonist capsazepine or TRP channels antagonist ruthenium red did not inhibit spontaneous nocifensive behavior at all. However, intraplantar administration of capsazepine or ruthenium red completely inhibited mechanical allodynia and thermal hyperalgesia produced by SCC-158 inoculation. Immunohistochemically, the number of TRPV1-positive, large-sized neurons increased, whereas there was no change in small-sized neurons in the dorsal root ganglia. Our results suggest that TRPV1 play an important role in the mechanical allodynia and thermal hyperalgesia caused by SCC-158 inoculation. ⋯ We describe a cancer pain model that induced marked mechanical allodynia, thermal hyperalgesia, signs of spontaneous nocifensive behavior, and upregulation of TRPV1. Mechanical allodynia and thermal hyperalgesia were inhibited by TRP channel antagonists. The results suggest that TRPV1 plays an important role in the model of cancer pain.
-
Randomized Controlled Trial Multicenter Study
Treatment of patients with complex regional pain syndrome type I with mannitol: a prospective, randomized, placebo-controlled, double-blinded study.
To assess the effects of intravenous administration of the free radical scavenger mannitol 10% on complaints associated with complex regional pain syndrome Type I (CRPS I), a randomized, placebo-controlled, double-blinded trial was performed. Forty-one CRPS I patients according to the Bruehl et al diagnostic criteria, were included in 2 outpatient pain clinics of 2 university medical centers and randomly assigned to receive either 10% mannitol iv in 1 L 0.9% NaCL in 4 hours for 5 consecutive days or equal volumes of 0.9% NaCL (placebo). Patients in both groups received physical therapy according to protocol and rescue pain medication if required. Complaints on impairment and disability level and quality of life were assessed up to 9 weeks after baseline, with primary measurement points at 2, 6, and 9 weeks. Monitoring of pain using the visual analogue scale took place continuously during the course of the trial. Except for a significant improvement on a subscale of the Jebsen-Taylor hand function test, no significant differences were found between mannitol and placebo treatment. Changes in both groups in the course of the trial were small and clinically irrelevant on all measurement indices. We conclude that intravenous administration of 10% mannitol is not more effective than placebo in reducing complaints for CRPS I patients and provides no addition to already-established interventions for CRPS I. Whether 10% mannitol can provide beneficial effects for subgroups of CRPS I patients with a pathophysiological profile more closely fitting the presumed mode of action for this intervention remains to be established. ⋯ This article addresses the efficacy of the intravenous administration of the free radical scavenger mannitol for treatment of CRPS type 1. This intervention is not more effective than placebo in reducing complaints for CRPS I patients and provides no addition to already-established interventions for CRPS I.
-
Randomized Controlled Trial
Massage reduces pain perception and hyperalgesia in experimental muscle pain: a randomized, controlled trial.
Massage is a common conservative intervention used to treat myalgia. Although subjective reports have supported the premise that massage decreases pain, few studies have systematically investigated the dose response characteristics of massage relative to a control group. The purpose of this study was to perform a double-blinded, randomized controlled trial of the effects of massage on mechanical hyperalgesia (pressure pain thresholds, PPT) and perceived pain using delayed onset muscle soreness (DOMS) as an endogenous model of myalgia. Participants were randomly assigned to a no-treatment control, superficial touch, or deep-tissue massage group. Eccentric wrist extension exercises were performed at visit 1 to induce DOMS 48 hours later at visit 2. Pain, assessed using visual analog scales (VAS), and PPTs were measured at baseline, after exercise, before treatment, and after treatment. Deep massage decreased pain (48.4% DOMS reversal) during muscle stretch. Mechanical hyperalgesia was reduced (27.5% reversal) after both the deep massage and superficial touch groups relative to control (increased hyperalgesia by 38.4%). Resting pain did not vary between treatment groups. ⋯ This randomized, controlled trial suggests that massage is capable of reducing myalgia symptoms by approximately 25% to 50%, varying with assessment technique. Thus, potential analgesia may depend on the pain assessment used. This information may assist clinicians in determining conservative treatment options for patients with myalgia.