The journal of pain : official journal of the American Pain Society
-
Growing evidence indicates that various chronic pain syndromes exhibit tissue abnormalities caused by microvasculature dysfunction in the blood vessels of skin, muscle, or nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in animal models of complex regional pain syndrome type I (CRPS-I) and neuropathic pain. We hypothesized that topical administration of either α(2)-adrenergic (α(2)A) receptor agonists or nitric oxide (NO) donors combined with either phosphodiesterase (PDE) or phosphatidic acid (PA) inhibitors would effectively reduce allodynia in these animal models of chronic pain. Single topical agents produced significant dose-dependent antiallodynic effects in rats with chronic postischemia pain, and the antiallodynic dose-response curves of PDE and PA inhibitors were shifted 2.5- to 10-fold leftward when combined with nonanalgesic doses of α(2)A receptor agonists or NO donors. Topical combinations also produced significant antiallodynic effects in rats with sciatic nerve injury, painful diabetic neuropathy, and chemotherapy-induced painful neuropathy. These effects were shown to be produced by a local action, lasted up to 6 hours after acute treatment, and did not produce tolerance over 15 days of chronic daily dosing. The present results support the hypothesis that allodynia in animal models of CRPS-I and neuropathic pain is effectively relieved by topical combinations of α(2)A or NO donors with PDE or PA inhibitors. This suggests that topical treatments aimed at improving microvascular function may reduce allodynia in patients with CRPS-I and neuropathic pain. ⋯ This article presents the synergistic antiallodynic effects of combinations of α(2)A or NO donors with PDE or PA inhibitors in animal models of CRPS-I and neuropathic pain. The data suggest that effective clinical treatment of chronic neuropathic pain may be achieved by therapies that alleviate microvascular dysfunction in affected areas.
-
The C-C motif chemokine ligand 5 (CCL5; also known as regulated on activation, normal T expressed and secreted, or RANTES) is a member of the CC family of chemokines that specifically attract and activate leukocytes to sites of inflammation. Although CCL5 has been implicated in the processing of pain, its detailed mechanisms of action are still unknown. In this study, we investigated the potential of the Met-RANTES, a selective CCL5 receptor antagonist, via peritoneal administration to modulate the recruitment of inflammatory cells in injured sites and attenuate nociceptive responses in a neuropathic pain model in mice. Nociceptive sensitization, immune cell infiltration, multiple cytokine secretion, and opioid peptide expression in damaged nerves were studied. Our results indicated that Met-RANTES-treated mice had less behavioral hypersensitivity after partial sciatic nerve ligation. Macrophage infiltration, pro-inflammatory cytokine (TNFα, IL-1β, IL-6, and IFNγ) protein secretion, and enkephalin, β-endorphin, and dynorphin mRNA expression in damaged nerves following partial sciatic nerve ligation were significantly decreased, and anti-inflammatory cytokine (IL-10) protein was significantly increased in Met-RANTES-treated mice. These results suggest that CCL5 is capable of regulating the microenvironment that controls behavioral hypersensitivity at the level of the peripheral injured site in a murine chronic neuropathic pain model. ⋯ The present study identifies the potent pro-inflammatory potential of CCL5 and verifies the possible role of selective CCL5 receptor inhibitor in a murine neuropathic pain model.
-
Repeated administration of opioids such as morphine induces persistent behavioral changes including opioid-induced hyperalgesia (OIH), tolerance, and physical dependence. In the current work we explored how the balance of histone acetyltransferase (HAT) versus histone deacetylase (HDAC) might regulate these morphine-induced changes. Nociceptive thresholds, analgesia, and physical dependence were assessed during and for a period of several weeks after morphine exposure. To probe the roles of histone acetylation, the HAT inhibitor curcumin or a selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was administered daily to groups of animals. Histone acetylation in spinal cord was assessed by Western blot and immunohistochemistry. Concurrent administration of curcumin with morphine for 4 days significantly reduced development of opioid-induced mechanical allodynia, thermal hyperalgesia, tolerance, and physical dependence. Conversely, the HDAC inhibitor SAHA enhanced these responses. Interestingly, SAHA treatment after the termination of opioid administration sustained these behavioral changes for at least 4 weeks. Histone H3 acetylation in the dorsal horn of the spinal cord was increased after chronic morphine treatment, but H4 acetylation was unchanged. Moreover, we observed a decrease in HDAC activity in the spinal cords of morphine-treated mice while overall HAT activity was unchanged, suggesting a shift toward a state of enhanced histone acetylation. ⋯ The current study indicates that epigenetic mechanisms play a crucial role in opioid-induced long-lasting neuroplasticity. These results provide new sight into understanding the mechanisms of opioid-induced neuroplasticity and suggest new strategies to limit opioid abuse potential and increase the value of these drugs as analgesics.
-
Stimulation of peripheral nociceptors results in increased c-Fos labeling in spinal cord regions associated with nociceptive processing. Accordingly, intracolonic capsaicin, which generates robust secondary (referred) allodynia on the abdomen of mice, also causes an increased spinal c-Fos labeling. In naïve rodents, low intensity innocuous stimulation does not affect c-Fos labeling in spinal nociceptive regions. However, after persistent noxious input, low intensity stimulation of the inflamed region further enhances c-Fos labeling, suggesting that low threshold mechanosensitive fibers gain access to the nociceptive channel after persistent inflammation. We have previously proposed that afferent activity in low threshold sensory fibers activates nociceptive sensory fibers through Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) -mediated enhanced primary afferent depolarization. Here, we show that intracolonic capsaicin enhances spinal c-Fos labeling and secondary allodynia in an NKCC1-dependent manner. Furthermore, we demonstrate that gently brushing the abdomen, the region of secondary allodynia, further increased spinal c-Fos levels, an effect that can be prevented by spinal NKCC1 blockade. These findings provide evidence that increased NKCC1 activity contributes to secondary allodynia and that innocuous touch can access the nociceptive channel in part through enhanced NKCC1 activity. ⋯ While touch normally soothes acute pain, we demonstrate that following peripheral inflammation, touch evokes pain (allodynia) through the switching of a normally inhibitory spinal pathway into an excitatory pathway. Activation of low threshold mechanoreceptors activates spinal nociceptive neurons following inflammation-induced enhancement of NKCC1 expression, as measured by spinal c-Fos labeling.