The journal of pain : official journal of the American Pain Society
-
Spatial summation of pain is well accepted but surprisingly understudied. Area-based summation refers to the increase in pain evoked by increasing the area of stimulation. Distance-based summation refers to the increase in pain evoked by increasing the distance between multiple stimuli. Although transcutaneous electrical stimulation has several advantages over other experimental pain paradigms, whether or not this modality evokes spatial summation remains unknown. We aimed to answer this question in order to lay the foundation for critical studies of spatial summation. Twenty-five healthy participants received stimuli on their forearm, and the primary outcome, pain intensity, was compared across 5 spatial configurations-1 with a single stimulus and 4 paired configurations at 0-, 5-, 10-, and 20-cm separations. Importantly, the potential confounder of a proximal-distal gradient in nociceptive sensitivity was removed in this study. Pain intensity was higher in response to the paired stimuli than in response to the single stimulus (P < .001), and the paired stimuli separated by 5, 10 and 20 cm, evoked greater pain than stimuli at a separation of 0 cm (P < .001), thus confirming both area- and distance-based summation, respectively. We conclude that transcutaneous electrical stimulation is appropriate for future investigations of spatial summation. ⋯ Distance-based summation is likely implicated in some clinical pain. However, current understanding for spatial summation is limited. This study demonstrates that transcutaneous electrical stimulation is safe, feasible, and valid for future investigations of spatial summation and will allow critical questions to be answered.
-
Motor dysfunction in complex regional pain syndrome (CRPS) is often considered a functional movement disorder. Earlier studies in patients with functional movement disorders found evidence of cortical inhibition during explicit but not implicit motor tasks, suggesting active inhibition from other brain areas. In this study, we explored whether active inhibition occurs in CRPS patients. We compared patients with CRPS with 2 control groups: healthy controls matched for age and sex, and patients whose hand was immobilized to treat a scaphoid fracture. We used transcranial magnetic stimulation to measure corticospinal excitability at rest and during motor imagery (explicit motor task) and motor observation (implicit motor task). Motor corticospinal excitation measured at rest and during implicit and explicit motor tasks was similar for CRPS patients and healthy controls. Patients with an immobilized hand showed an absence of motor cortical excitation of the corresponding hemisphere during motor imagery of tasks involving the immobilized hand, but not during motor observation. The normal motor cortical processing during motor imagery and motor observation found in the corresponding hemisphere of CPRS patients suggests that the nature of motor dysfunction in this condition differs from that described in literature for patients with functional paresis or under circumstances of limb immobilization. ⋯ This study shows that the nature of motor dysfunction in CRPS patients differs from that encountered in patients with functional paresis or under circumstances of limb immobilization. This information is important for patients and pain clinicians and could help prevent implementation of therapeutic strategies based on incorrect assumptions.
-
Evidence shows involvement of the cerebral cortex in the pathophysiology of cluster headache (CH). Here we investigated cortical excitability in episodic CH patients by using transcranial magnetic stimulation. In 25 patients with episodic CH and 13 healthy subjects we evaluated the motor cortical response to single-pulse (ie, motor threshold, input-output curves, cortical silent period) and paired-pulse (ie, intracortical facilitation, short intracortical inhibition) transcranial magnetic stimulation in both hemispheres. Thirteen patients were evaluated outside bout and the remaining 12 patients inside bout. Our results showed increased slope of the input-output curves after stimulation of both hemispheres in patients outside bout and in the hemisphere contralateral to the headache side in patients inside bout. Increased intracortical facilitation was observed in the hemisphere ipsilateral to the headache side in patients evaluated both outside and inside bout; reduced short intracortical inhibition was observed in patients inside bout ipsilateral to the side of pain. In conclusion, we provide evidence of increased cortical excitability in episodic CH both outside and inside bout, especially in the hemisphere ipsilateral to the side of headache attacks. Our results suggest that an abnormal regulation of cortical excitability could be involved in the pathophysiology of CH. ⋯ We investigated cortical excitability in episodic cluster headache by using transcranial magnetic stimulation, providing evidence of cortical hyperexcitability in patients both inside and outside bout. We suggest that an abnormal state of cortical excitability could be involved in the pathophysiology of the disease.
-
Elevated glutamate levels within injured muscle play important roles in muscle pain and hyperalgesia. In this study, we hypothesized that protein kinase C (PKC)-dependent TRPV1 phosphorylation contributes to the muscle mechanical hyperalgesia following activation of Group I metabotropic glutamate receptors (mGlu1/5). Mechanical hyperalgesia induced by (R,S)-3,5-dihydroxyphenylglycine (DHPG), an mGlu1/5 agonist, in the masseter muscle was attenuated by AMG9810, a specific TRPV1 antagonist. AMG9810 also suppressed mechanical hyperalgesia evoked by pharmacologic activation of PKC. DHPG-induced mechanical hyperalgesia was suppressed by pretreatment with a decoy peptide that disrupted interactions between TRPV1 and A-kinase-anchoring protein (AKAP), which facilitates phosphorylation of TRPV1. In dissociated trigeminal ganglia, DHPG upregulated serine phosphorylation of TRPV1 (S800), during which DHPG-induced mechanical hyperalgesia was prominent. The TRPV1 phosphorylation at S800 was suppressed by a PKC inhibitor. Electrophysiologic measurements in trigeminal ganglion neurons demonstrated that TRPV1 sensitivity was enhanced by pretreatment with DHPG, and this was prevented by a PKC inhibitor, but not by a protein kinase A inhibitor. These results suggest that mGlu1/5 activation in masseter afferents invokes phosphorylation of TRPV1 serine residues including S800, and that phosphorylation-induced sensitization of TRPV1 is involved in masseter mechanical hyperalgesia. These data support a role of TRPV1 as an integrator of glutamate receptor signaling in muscle nociceptors. ⋯ This article demonstrates that activation of mGlu1/5 leads to phosphorylation of a specific TRPV1 residue via PKC and AKAP150 in trigeminal sensory neurons and that functional interactions between glutamate receptors and TRPV1 mediate mechanical hyperalgesia in the muscle tissue.