The journal of pain : official journal of the American Pain Society
-
The fear-avoidance model postulates that in an initial acute phase chronic low back pain (CLBP) patients acquire a fear of movement that results in avoidance of physical activity and contributes to the pain becoming chronic. The current functional magnetic resonance imaging study investigated the neural correlates of imagining back-straining and neutral movements in CLBP patients with high (HFA) and low fear avoidance (LFA) and healthy pain-free participants. Ninety-three persons (62 CLBP patients, 31 healthy controls; age 49.7 ± 9.2 years) participated. The CLBP patients were divided into an HFA and an LFA group using the Tampa Scale of Kinesiophobia. The participants viewed pictures of back-straining and neutral movements and were instructed to imagine that they themselves were executing the activity shown. When imagining back-straining movements, HFA patients as well as healthy controls showed stronger anterior hippocampus activity than LFA patients. The neural activations of HFA patients did not differ from those of healthy controls. This may indicate that imagining back-straining movements triggered pain-related evaluations in healthy controls and HFA participants, but not in LFA participants. Although heightened pain expectancy in HFA compared with LFA patients fits well with the fear-avoidance model, the difference between healthy controls and LFA patients was unexpected and contrary to the fear-avoidance model. Possibly, negative evaluations of the back-straining movements are common but the LFA patients use some kind of strategy enabling them to react differently to the back-straining events. ⋯ It appears that low fear-avoidant back pain patients use some kind of strategy or underlying mechanism that enables them to react with less fear in the face of potentially painful movements. This warrants further investigation because countering fear and avoidance provide an important advantage with respect to disability.
-
Many derivatives of bisphosphonates, which are inhibitors of bone resorption, have been developed as promising agents for painful pathologies in patients with bone resorption-related diseases. The mechanism for pain relief by bisphosphonates remains uncertain. Studies have reported that bisphosphonates could reduce central neurochemical changes involved in the generation and maintenance of bone cancer pain. In this study, we hypothesized that bisphosphonates would inhibit spinal microglial activation and prevent the development of hyperalgesia caused by peripheral tissue injury. We investigated the effects of alendronate (a nitrogen-containing bisphosphonate) on the development of neuropathic pain and its role in modulating microglial activation in vivo and in vitro. Intrathecal and intraperitoneal administration of alendronate relieved neuropathic pain behaviors induced by chronic constriction sciatic nerve injury. Alendronate also significantly attenuated spinal microglial activation and p38 mitogen-activated protein kinase (MAPK) phosphorylation without affecting astrocytes. In vitro, alendronate downregulated phosphorylated p38 and phosphorylated extracellular signal regulated kinase expression in lipopolysaccharide-stimulated primary microglia within 1 hour, and pretreatment with alendronate for 12 and 24 hours decreased the expression of inflammatory cytokines (tumor necrosis factor α, and interleukins 1β and 6). These findings indicate that alendronate could effectively relieve chronic constriction sciatic nerve injury-induced neuropathic pain by at least partially inhibiting the activation of spinal microglia and the p38 MAPK signaling pathway. ⋯ Alendronate could relieve neuropathic pain behaviors in animals by inhibiting the activation of spinal cord microglia and the p38 MAPK cell signaling pathway. Therapeutic applications of alendronate may be extended beyond bone metabolism-related disease.