The journal of pain : official journal of the American Pain Society
-
Cancer-induced bone pain (CIBP) remains a major challenge in advanced cancer patients because of our lack of understanding of its mechanisms. Previous studies have shown the vital role of γ-aminobutyric acid B receptors (GABABRs) in regulating nociception and various neuropathic pain models have shown diminished activity of GABABRs. However, the role of spinal GABABRs in CIBP remains largely unknown. ⋯ Our behavioral results show that acute as well as chronic intrathecal treatment with baclofen, a GABABR agonist, significantly attenuated CIBP-induced mechanical allodynia and ambulatory pain. The expression levels of GABABRs were significantly decreased in a time-dependent manner and colocalized mostly with neurons and a minority with astrocytes and microglia. Chronic treatment with baclofen restored the expression of GABABRs and markedly inhibited the activation of cyclic adenosine monophosphate (cAMP)-dependent protein kinase and the cAMP-response element-binding protein signaling pathway.
-
The number of studies on trigeminal nerve injury using animal models remains limited. A rodent model of trigeminal neuropathic pain was first developed in 1994, in which chronic constriction injury (CCI) is induced by ligation of the infraorbital nerve (IoN). This animal model has served as a major tool to study trigeminal neuropathic pain. Unfortunately, the surgical procedure in this model is complicated and far more difficult than ligation of peripheral nerves (eg, sciatic nerve). The aim of this study was to improve on the current surgical procedure of IoN ligation to induce trigeminal neuropathic pain in rats. We show that the IoN can be readily accessed through a small facial incision. CCI can be induced by ligation of a segment at the distal IoN (dIoN). This dIoN-CCI procedure is simple, minimally invasive, and time-saving. Our data show that the dIoN-CCI procedure consistently induced acute as well as chronic nociceptive behaviors in rats. Daily gabapentin treatment attenuated mechanical allodynia and reduced face-grooming episodes in dIoN-CCI rats. ⋯ The orofacial pain caused by trigeminal nerve damage is severe and perhaps more debilitating than other types of neuropathic pain. However, studies on trigeminal neuropathic pain remain limited. This is largely because of the lack of proper animal models because of the complexity of the existing surgical procedures required to induce trigeminal nerve injury. Our improved dIoN-CCI model is likely to make it more accessible to study the cellular and molecular mechanisms of neuropathic pain caused by trigeminal nerve damage.
-
Randomized Controlled Trial
Minocycline prevents muscular pain hypersensitivity and cutaneous allodynia produced by repeated intramuscular injections of hypertonic saline in healthy human participants.
Minocycline, a glial suppressor, prevents behavioral hypersensitivities in animal models of peripheral nerve injury. However, clinical trials of minocycline in human studies have produced mixed results. This study addressed 2 questions: can repeated injections of hypertonic saline (HS) in humans induce persistent hypersensitivity? Can pretreatment with minocycline, a tetracycline antibiotic with microglial inhibitory effects, prevent the onset of hypersensitivity? Twenty-seven healthy participants took part in this double-blind, placebo-controlled study, consisting of 6 test sessions across 2 weeks. ⋯ Placebo-treated participants experienced a bilateral 35% alleviation in muscle soreness (P < .0001), with no changes to the prevalence of cold allodynia. In contrast, minocycline-treated participants experienced a bilateral 70% alleviation in muscle soreness (P < .0001), additionally, only 10% of minocycline-treated participants showed cold allodynia. This study showed that repeated injections of HS can induce a hypersensitivity that outlasts the acute response, and the development of this hypersensitivity can be reliably attenuated with minocycline pretreatment.
-
The aim of the present study was to examine the incidence and predictors of persistent prescription opioid use 4 months after traumatic injury. Adults who sustained a traumatic musculoskeletal injury were recruited to participate in this observational prospective, longitudinal study within 14 days of injury (T1) and followed for 4 months (T2). Measures included questionnaires on pain, opioid consumption, pain disability, anxiety, depression, and posttraumatic stress symptoms as well as a chart review for injury related information. ⋯ At T2, 35.3% (n = 43) patients were using prescription opioids. After controlling for age, sex, injury severity, T1 pain severity, and T2 symptoms of depression, 2 factors emerged as significantly related to T2 prescription opioid use; namely, T2 pain severity (odds ratio = 1.248, 95% confidence interval, 1.071-1.742) and T2 pain self-efficacy (odds ratio = .943, 95% confidence interval, .903-.984). These results suggest that opioid use after traumatic musculoskeletal injury is related to pain severity and how well patients cope specifically with their pain, over and above other psychological factors, such as depression and anxiety.