The journal of pain : official journal of the American Pain Society
-
Observational Study
Sensory innervation of human bone: an immunohistochemical study to further understand bone pain.
Skeletal diseases and their surgical treatment induce severe pain. The innervation density of bone potentially explains the severe pain reported. Animal studies concluded that sensory myelinated A∂-fibers and unmyelinated C-fibers are mainly responsible for conducting bone pain, and that the innervation density of these nerve fibers was highest in periosteum. ⋯ Further, the results could provide more insight into mechanisms that generate and maintain skeletal pain and might aid in developing new treatment strategies. PERSPECTIVE: This article presents the innervation of human bone and assesses the effect of age, gender, bone compartment and type of bone on innervation density. The presented data provide an explanation for the severity of bone pain arising from skeletal diseases and their surgical treatment.
-
Cognitive impairment associated with chronic pain remains relatively poorly understood. Use of analgesic drugs and often present co-morbidities in patients can preclude conclusions of causative relationships between chronic pain and cognitive deficits. Here, the impact of pain resulting from spinal nerve ligation (SNL) injury in rats on short and long-term memory was assessed in the novel object recognition task. ⋯ Together these data suggest chronic pain reversibly takes up a significant amount of limited cognitive resources, leaving sufficient available for easy, but not difficult, tasks. PERSPECTIVE: Memory deficits in a rat model of chronic pain were only seen when the cognitive load was high, ie, in a difficult task. Acute treatment with duloxetine was sufficient to relieve memory deficits, suggesting chronic pain induces memory deficits by seizing limited cognitive resources to the detriment of task-related stimuli.