The journal of pain : official journal of the American Pain Society
-
Nerve injury outcomes might be predicted by examining small extracellular vesicles (sEVs) in circulation, as their biomolecular cargo facilitates cellular communication and can alter transcriptional state and behavior of recipient cells. We found that sEVs from the serum of spared nerve injury (SNI) model male mice had 7 differentially expressed miRNAs compared to sEVs from sham-operated control mice 4 weeks postsurgery. We investigated how these sEVs alter transcription in primary cortical microglia, a crucial mediator of neuropathic pain, using RNA sequencing. ⋯ Thus, when using sEVs from sham mice as control in comparative mechanistic studies after nerve injury, sex of mice should be taken into consideration. PERSPECTIVE: Microglial uptake of sEVs from male sham control mice induces higher pro-inflammatory responses compared to SNI sEVs but the reverse was observed upon treatment with sEVs from female mice. Wound healing may have a long-term impact on sEVs in male mice and should be considered for comparative studies using sEVs.
-
Spinal cord injury (SCI)-induced neuropathic pain (SCI-NP) develops in up to 60 to 70% of people affected by traumatic SCI, leading to a major decline in quality of life and increased risk for depression, anxiety, and addiction. Gabapentin and pregabalin, together with antidepressant drugs, are commonly prescribed to treat SCI-NP, but their efficacy is unsatisfactory. The limited efficacy of current pharmacological treatments for SCI-NP likely reflects our limited knowledge of the underlying mechanism(s) responsible for driving the maintenance of SCI-NP. ⋯ We found that both TTA-P2 and gabapentin reduced mechanical hypersensitivity in male and females SCI rats, but surprisingly only TTA-P2 reduced spontaneous ongoing pain in male SCI rats. PERSPECTIVES: SCI-induced neuropathic pain, and in particular the spontaneous ongoing pain component, is notoriously very difficult to treat. Our data provide evidence that inhibition of T-type calcium channels reduces spontaneous ongoing pain in SCI rats, supporting a clinically relevant role for T-type channels in the maintenance of SCI-induced neuropathic pain.
-
Affective disruptions, particularly deficits in positive affect, are characteristic of fibromyalgia (FM). The Dynamic Model of Affect provides some explanations of affective disruptions in FM, suggesting that the inverse association between positive and negative emotions is stronger when individuals with FM are under greater stress than usual. However, our understanding of the types of stressors and negative emotions that contribute to these affective dynamics is limited. ⋯ In addition, having a more nuanced understanding of the role that different negative emotions play may be similarly important to understanding emotional dynamics in FM. PERSPECTIVE: This article presents new findings on the emotional dynamics in FM during times of increased pain, fatigue, and stress. Findings highlight the need for clinicians to conduct a comprehensive evaluation of fatigue, stress, and anger in addition to more routinely assessed depression and pain when working with individuals with FM.
-
The ability to accurately predict pain is an adaptive feature in healthy individuals. However, in chronic pain, this mechanism may be selectively impaired and can lead to increased anxiety and excessive avoidance behavior. Recently, we reported the first data demonstrating brain activation in fibromyalgia (FM) patients during conditioned pain responses, in which FM patients revealed a tendency to form new pain-related associations rather than extinguishing irrelevant ones. ⋯ PERSPECTIVE: FM exhibited a stronger conditioned pain response for high-pain associations, which was associated with reduced dlPFC activation during the incongruent trial. During (congruent and incongruent) low pain associations, FM dlPFC brain activation remained indifferent. Imbalances in threat and safety pain perception may be an important target for psychotherapeutic interventions.
-
The origin of chronic pain is linked to inflammation, characterized by increased levels of proinflammatory cytokines in local tissues and systemic circulation. Transforming growth factor beta-activated kinase 1 (TAK1) is a key regulator of proinflammatory cytokine signaling that has been well characterized in the context of cancer and autoimmune disorders, yet its role in chronic pain is less clear. Here, we evaluated the ability of our TAK1 small-molecule inhibitor, takinib, to attenuate pain and inflammation in preclinical models of inflammatory, neuropathic, and primary pain. ⋯ Overall, our results support the therapeutic potential of TAK1 as a novel drug target for the treatment of chronic pain syndromes with different etiologies. PERSPECTIVE: This article reports the therapeutic potential of TAK1 inhibitors for the treatment of chronic pain. This new treatment has the potential to provide a greater therapeutic offering to physicians and patients suffering from chronic pain as well as reduce the dependency on opioid-based pain treatments.