The journal of pain : official journal of the American Pain Society
-
The hippocampus is believed to play an important role in sex-based differences of pain perception. Whether estrogen potentiates allodynia in the inflamed temporomandibular joint (TMJ) through affecting the expressions of pain-related genes in the hippocampus remains largely unknown. Because the nerve growth factor (NGF) is an important gene related to inflammatory pain, we tested whether hippocampal NGF may be involved in TMJ inflammatory pain. Here we showed that the rat hippocampal NGF was upregulated by TMJ inflammation induced by complete Freund adjuvant. NGF upregulation was further potentiated by estradiol in a dose-dependent manner. In contrast, NGF transcription in the amygdala, prefrontal cortex, and thalamus was not affected by TMJ inflammation and estradiol. An intrahippocampal injection of NGF antibody or NGF receptor inhibitor K252a (inhibitor for tropomyosin receptor kinase A, TrkA) reduced the allodynia of inflamed TMJ in proestrous rats. Our data suggest that the hippocampal NGF is involved in estradiol-sensitized allodynia of inflammatory TMJ pain. ⋯ We report that complete Freund adjuvant-induced temporomandibular joint (TMJ) inflammation upregulated hippocampal nerve growth factor (NGF) expression, and estradiol replacement potentiated this upregulation. These results propose that estradiol could modulate TMJ pain through the NGF signaling pathway in the hippocampus to exacerbate TMJ pain and offer a possible mechanism of sexual dimorphism of temporomandibular disorder pain.
-
Cancer patients often suffer from pain and most will be prescribed μ-opioids. μ-opioids are not satisfactory in treating cancer pain and are associated with multiple debilitating side effects. Recent studies show that μ and δ opioid receptors are separately expressed on IB4 (-) and IB4 (+) neurons, which control thermal and mechanical pain, respectively. In this study we investigated IB4 (+) and IB4 (-) neurons in mechanical and thermal hypersensitivity in an orthotopic mouse oral cancer model. We used a δ opioid receptor agonist and a P2X(3) antagonist to target IB4 (+) neurons and to demonstrate that this subset plays a key role in cancer-induced mechanical allodynia, but not in thermal hyperalgesia. Moreover, selective removal of IB4 (+) neurons using IB4-saporin impacts cancer-induced mechanical but not thermal hypersensitivity. Our results demonstrate that peripherally administered pharmacological agents targeting IB4 (+) neurons, such as a selective δ-opioid receptor agonist or P2X(3) antagonist, might be useful in treating oral cancer pain. ⋯ To clarify the mechanisms of oral cancer pain, we examined the differential role of IB4 (+) and IB4 (-) neurons. Characterization of these 2 subsets of putative nociceptors is important for further development of effective clinical cancer pain relief.
-
Several lines of evidence indicate that brain-derived neurotrophic factor (BDNF) plays a key role as a central pronociceptive modulator of pain, acting through postsynaptic TrkB receptors that trigger intracellular signaling cascades leading to central sensitization. The overall aim of this study was to investigate to what extent BDNF could participate in the generation and maintenance of trigeminal neuropathic pain. The results showed that acute intracisternal administration of nanogram doses of BDNF in naïve mice elicited long-lasting, dose-related, cold allodynic responses to topical application of acetone onto vibrissal pad skin. The systemic administration of cyclotraxin-B (CTX-B), a new TrkB receptor antagonist, or propentofylline, an inhibitor of glial activation, was able to either prevent or reverse the effects of intracisternal BDNF on cold nociception. In addition, the blockade of TrkB receptor by CTX-B inhibited the mechanisms that either initiate or maintain cold allodynia in the ipsilateral vibrissal pad skin after unilateral constriction of the infraorbital nerve. These observations raise the possibility that BDNF is capable on its own of conveying many features of the signaling mechanisms that underlie central sensitization caused by nerve constriction. ⋯ Although further studies are necessary to examine in detail the mechanisms underlying the strong anti-allodynic action of CTX-B, this compound may represent an interesting lead for the development of novel therapeutic strategies aimed at preventing and/or suppressing central sensitization associated with neuropathic pain.
-
Patients with chronic pain experience spontaneous or ongoing pain as well as enhanced sensitivity to evoked stimuli. Spontaneous or ongoing pain is rarely evaluated in preclinical studies. In fact, it remains controversial whether ongoing or spontaneous pain even develops in mice after tissue or nerve injury. This study tested a hypothesis that negative reinforcement can be used to unmask the presence of pain in mice with tissue or nerve injury. We found that spinal administration of clonidine or lidocaine did not elicit conditioned place preference (CPP) in uninjured or sham-operated mice. However, these agents produced CPP in mice with chronic inflammation induced by complete Freund's adjuvant (CFA) or following L5/L6 spinal nerve ligation (SNL). These data indicate the presence of non-evoked (ie, stimulus-independent) ongoing pain in mice with chronic inflammation (CFA) or following nerve injury (SNL). In addition, this study validates the use of negative reinforcement to unmask non-evoked ongoing pain in mice. Given the existence of a large collection of transgenic and knockout mice, our data show the application of this approach to elucidate molecular mechanisms underlying non-evoked pain and to contribute to drug discovery for pain. ⋯ We demonstrated the presence of non-evoked ongoing pain in mice with chronic inflammation or following nerve injury. The study also validates the use of negative reinforcement to unmask non-evoked pain in mice. We propose to apply this approach to identify molecular mechanisms and effective drugs for chronic pain.