The journal of pain : official journal of the American Pain Society
-
Randomized Controlled Trial
Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects.
Pain modulation can be achieved using neuromodulatory tools that influence various levels of the nervous system. Transcranial direct current stimulation (tDCS), for instance, has been shown to reduce chronic pain when applied to the primary motor cortex. In contrast to this central neuromodulatory technique, diffuse noxious inhibitory controls (DNIC) refers to endogenous analgesic mechanisms that decrease pain following the introduction of heterotopic noxious stimuli. We examined whether combining top-down motor cortex modulation using anodal tDCS with a bottom-up DNIC induction paradigm synergistically increases the threshold at which pain is perceived. The pain thresholds of 15 healthy subjects were assessed before and after administration of active tDCS, sham tDCS, cold-water-induced DNIC, and combined tDCS and DNIC. We found that both tDCS and the DNIC paradigm significantly increased pain thresholds and that these approaches appeared to have additive effects. Increase in pain threshold following active tDCS was positively correlated with baseline N-acetylaspartate in the cingulate cortex and negatively correlated with baseline glutamine levels in the thalamus as measured by magnetic resonance spectroscopy. These results suggest that motor cortex modulation may have a greater analgesic effect when combined with bottom-up neuromodulatory mechanisms, presenting new avenues for modulation of pain using noninvasive neuromodulatory approaches. ⋯ This article demonstrates that both noninvasive motor cortex modulation and a descending noxious inhibitory controls paradigm significantly increase pain thresholds in healthy subjects and appear to have an additive effect when combined. These results suggest that existing pain therapies involving DNIC may be enhanced through combination with noninvasive brain stimulation.
-
Chronic neuropathic pain is one of the most prevalent and debilitating disorders. Conventional medical management, however, remains frustrating for both patients and clinicians owing to poor specificity of pharmacotherapy, delayed onset of analgesia and extensive side effects. Neuromodulation presents as a promising alternative, or at least an adjunct, as it is more specific in inducing analgesia without associated risks of pharmacotherapy. Here, we discuss common clinical and investigational methods of neuromodulation. Compared to clinical spinal cord stimulation (SCS), investigational techniques of cerebral neuromodulation, both invasive (deep brain stimulation [DBS] and motor cortical stimulation [MCS]) and noninvasive (repetitive transcranial magnetic stimulation [rTMS] and transcranial direct current stimulation [tDCS]), may be more advantageous. By adaptively targeting the multidimensional experience of pain, subtended by integrative pain circuitry in the brain, including somatosensory and thalamocortical, limbic and cognitive, cerebral methods may modulate the sensory-discriminative, affective-emotional and evaluative-cognitive spheres of the pain neuromatrix. Despite promise, the current state of results alludes to the possibility that cerebral neuromodulation has thus far not been effective in producing analgesia as intended in patients with chronic pain disorders. These techniques, thus, remain investigational and off-label. We discuss issues implicated in inadequate efficacy, variability of responsiveness, and poor retention of benefit, while recommending design and conceptual refinements for future trials of cerebral neuromodulation in management of chronic neuropathic pain. ⋯ This critical review focuses on factors contributing to poor therapeutic utility of invasive and noninvasive brain stimulation in the treatment of chronic neuropathic and pain of noncancerous origin. Through key clinical trial design and conceptual refinements, retention and consistency of response may be improved, potentially facilitating the widespread clinical applicability of such approaches.
-
Intact cognitive inhibition in patients with fibromyalgia but evidence of declined processing speed.
Patients with fibromyalgia frequently report cognitive complaints. In this study we examined performance on 2 cognitive inhibition tests, the Stroop Color-Word Test (SCWT) and the Multi-Source Interference Test (MSIT), in 35 female patients with fibromyalgia and 35 age-matched healthy female controls. Experimental pressure pain thresholds (PPT) were determined, and fibromyalgia patients rated their current pain on a visual analog scale and completed the pain and fatigue subscales of the Fibromyalgia Impact Questionnaire. Further, all subjects completed questionnaires assessing symptoms of pain catastrophizing, depression, and anxiety. Significant group differences were found for SCWT and MSIT performance in both the neutral (N) and interference (I) conditions with slower reaction times in patients versus controls. However, no significant group differences were found for the difference (I-N) or proportion (I/N) scores, or on the number of errors made. For patients, pain experienced during PPT correlated significantly to several indices of cognition. Psychosocial variables were not related to cognitive test performance. Fibromyalgia patients performed worse on both tests but to a similar extent for the neutral condition and the interference condition, indicating that there is no specific problem in cognitive inhibition. Evidence of decreased mental processing and/or psychomotor speed was found in patients with fibromyalgia. ⋯ Fibromyalgia patients performed worse on interference tests, but no specific problem in cognitive inhibition was found. Decreased reaction time performance may instead point to an underlying problem of psychomotor or mental processing speed in fibromyalgia. Future studies should examine potential deficits in psychomotor function in fibromyalgia patients in more detail.
-
We examined the relationship between estrogen and pain in women undergoing in vitro fertilization (IVF). Quantitative sensory tests (QST) were performed twice during the IVF-regimen: once during hormonal down-regulation and once during hormonal up-regulation. A group of healthy men and a group of women using monophasic contraceptives were also examined, to control for session-to-session effects. Among the women undergoing IVF, serum 17β-estradiol levels differed strongly between treatments as expected, and increased from 65.7 (SD = 26) pmol/L during the down-regulation phase, to 5,188 (SD = 2,524) pmol/L during the up-regulation phase. Significant outcomes in the QST were only seen for temperature perception thresholds (1.7 °C versus 2.2 °C; P = .003) and cold pain threshold (11.5 °C versus 14.5 °C; P = .04). A similar change in cold pain threshold was also seen in the 2 control groups, however, and statistical analysis suggested that this change was due to a session-to-session effect rather than being the result of hormonal modulation. Heat pain thresholds, heat tolerance, pressure pain thresholds, and the cold pressor test showed no significant differences between sessions. These data demonstrate that pain perception and pain thresholds in healthy women show little, if any, changes even with major variations in serum estradiol levels. ⋯ This study shows that pain perception and tolerance in women undergoing in vitro fertilization do not vary, despite the dramatic changes in 17β-estradiol levels induced by the treatment regimen. The result thus suggests that in humans, contrary to experimental animals, changes in estrogen levels have little influence on pain sensitivity.
-
Inhibitor kappa B kinase (IKK)-mediated nuclear factor-kappa B (NF-κB) activation is a major pathway for transcriptional control of various pro-inflammatory factors. We here assessed whether activation of this pathway specifically in primary nociceptive neurons of the dorsal root ganglia (DRG) contributes to the development of nociceptive hypersensitivity. Mice carrying a cre-loxP-mediated deletion of inhibitor kappa B kinase beta (IKKβ) in DRG neurons were protected from nerve injury-evoked allodynia and hyperalgesia. This effect was mimicked by systemic treatment with an IKKβ inhibitor but was not observed upon specific inhibition of IKKβ in the spinal cord, suggesting a specific role of IKKβ in the peripheral neurons. The deletion of IKKβ in DRG neurons did not affect constitutive neuronal NF-κB activity, but reduced nerve injury-evoked NF-κB stimulation in the DRG and was associated with reduced upregulation of interleukin-16, monocyte chemoattractant protein-1/chemokine (CC motif) ligand 2 (MCP-1/CCL2), and tumor necrosis factor alpha (TNFα) in the DRG. These cytokines evoked a rapid rise of intracellular calcium in subsets of primary DRG neurons. The results suggest that IKKβ-mediated NF-κB stimulation in injured primary sensory neurons promotes cytokine and chemokine production and contributes thereby to the development of chronic pain. ⋯ Inhibitors of IKK that do not pass the blood-brain barrier and act only in the periphery might be useful for reduction of the pro-inflammatory response in peripheral DRG neurons and reduce thereby nerve injury-evoked pain without affecting neuroprotective effects of NF-κB in the central nervous system.