The journal of pain : official journal of the American Pain Society
-
Randomized Controlled Trial Multicenter Study
Feasibility study of Transcutaneous Electrical Nerve Stimulation (TENS) for cancer bone pain.
This multicenter study assessed the feasibility of conducting a phase III trial of transcutaneous electrical nerve stimulation (TENS) in patients with cancer bone pain recruited from palliative care services. Eligible patients received active and placebo TENS for 1 hour at site of pain in a randomized crossover design; median interval between applications 3 days. Responses assessed at 30 and 60 minutes included numerical and verbal ratings of pain at rest and on movement, and pain relief. Recruitment, tolerability, adverse events, and effectiveness of blinding were also evaluated. Twenty-four patients were randomised and 19 completed both applications. The intervention was well tolerated. Five patients withdrew: 3 due to deteriorating performance status, and 2 due to increased pain (1 each following active and placebo TENS). Confidence interval estimation around the differences in outcomes between active and placebo TENS suggests that TENS has the potential to decrease pain on movement more than pain on rest. Nine patients did not consider that a placebo was used; the remaining 10 correctly identified placebo TENS. Feasibility studies are important in palliative care prior to undertaking clinical trials. Our findings suggest that further work is required on recruitment strategies and refining the control arm before evaluating TENS in cancer bone pain. ⋯ Cancer bone pain is common and severe, and partly mediated by hyperexcitability. Animal studies suggest that Transcutaneous Electrical Nerve Stimulation can reduce hyperalgesia. This study examined the feasibility of evaluating TENS in patients with cancer bone pain in order to optimize methods before a phase III trial.
-
Comparative Study
Impact of postherpetic neuralgia and painful diabetic peripheral neuropathy on health care costs.
Knowledge of the health care costs associated with neuropathic pain is limited. Existing studies have not directly compared the health care costs of different neuropathic pain conditions, and patients with neuropathic pain have not been compared with control subjects with the same underlying conditions (for example, diabetes). To determine health care costs associated with postherpetic neuralgia (PHN) and painful diabetic peripheral neuropathy (DPN), patients with these conditions were selected from 2 different administrative databases of health care claims and respectively matched to control subjects who had a diagnosis of herpes zoster without persisting pain or a diagnosis of diabetes without neurological complications using propensity scores for demographic and clinical factors. Total excess health care costs attributable to PHN and painful DPN and excess costs for inpatient care, outpatient/professional services, and pharmacy expenses were calculated. The results indicated that the annual excess health care costs associated with peripheral neuropathic pain in patients of all ages range from approximately $1600 to $7000, depending on the specific pain condition. Total excess health care costs associated with painful DPN were substantially greater than those associated with PHN, which might reflect the great medical comorbidity associated with DPN. ⋯ The data demonstrate that the health care costs associated with 1 peripheral neuropathic pain condition cannot be extrapolated to other neuropathic pain conditions. The results also increase understanding of the economic burden of PHN and painful DPN and provide a basis for evaluating the impact on health care costs of new interventions for their treatment and prevention.
-
While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. ⋯ These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome.
-
Repeated injections of acidic saline into the gastrocnemius muscle induce both muscle and cutaneous hypersensitivity. We have previously shown that microinjection of local anesthetic into either the rostral ventromedial medulla (RVM) or the nucleus reticularis gigantocellularis (NGC) reverses this muscle and cutaneous hypersensitivity. Although prior studies show that NMDA receptors in the RVM play a clear role in mediating visceral and inflammatory hypersensitivity, the role of NMDA receptors in the NGC or in noninflammatory muscle pain is unclear. Therefore, the present study evaluated involvement of the NMDA receptors in the RVM and NGC in muscle and cutaneous hypersensitivity induced by repeated intramuscular injections of acidic saline. Repeated intramuscular injections of acidic saline, 5 days apart, resulted in a bilateral decrease in the withdrawal thresholds of the paw and muscle in all groups 24 hours after the second injection. Microinjection of NMDA receptor antagonists into the RVM reversed both the muscle and cutaneous hypersensitivity. However, microinjection of NMDA receptor antagonists into the NGC only reversed cutaneous but not muscle hypersensitivity. These results suggest that NMDA receptors in the RVM mediate both muscle and cutaneous hypersensitivity, but those in the NGC mediate only cutaneous hypersensitivity after muscle insult. ⋯ The current study shows that NMDA receptors in supraspinal facilitatory sites maintain noninflammatory muscle pain. Clinical studies in people with chronic widespread, noninflammatory pain, similarly, show alterations in central excitability. Thus, understanding mechanisms in an animal model could lead to improved treatment for patients with chronic muscle pain.
-
Intraplantar injection of bee venom (BV) produces persistent spontaneous nociception (PSN), hyperalgesia, and inflammatory swelling of the injected paw. The present study was designed to determine the roles of peripheral metabotropic glutamate receptors (mGluRs) in BV-induced nociception and inflammation. We determined the effects of the group I mGluR antagonist AIDA, the group II mGluR agonist ADPC, and the group III mGluR agonist L-AP4 on BV-induced PSN, mechanical hyperalgesia, and inflammatory swelling. Pretreatment with intraplantar injections of AIDA, ADPC or L-AP4 at different doses significantly inhibited BV-induced PSN over the 1-hour observational period. The inhibitory effects of ADPC and L-AP4 were completely abolished by pretreatment with the group II mGluR antagonist LY341495 and the group III mGluR antagonist MSOP, respectively. Pretreatment with ADPC prevented the BV-induced decrease in paw-withdrawal mechanical threshold (PWMT) in a dose-dependent manner, while pretreatment with AIDA or L-AP4 had no effect. The antihyperalgesic effect of ADPC was completely abolished by pretreatment with LY341495. Pretreatment with AIDA, ADPC or L-AP4 at different doses had no effect on the BV-induced increase in the paw volume (PV), a measurement of inflammatory swelling. All contralateral drug treatments at the highest doses had no effect on BV-induced PSN, decreases in PWMT or increases in PV, eliminating the possibility of drug-induced systemic effects. These data suggest that the activation of mGluRs in the periphery may play a differential role in BV-induced nociception and inflammation. ⋯ The present study demonstrated that the intraplantar injection of antagonists or agonists of different mGluRs produced differential effects on bee venom-induced persistent spontaneous nociception and mechanical hyperalgesia. However, no effects on inflammation were observed, suggesting that mGluRs in the periphery have differential roles. Thus, therapies specifically targeting metabotropic glutamate receptors may improve the treatment of patients with persistent spontaneous nociception and hyperalgesia.