The journal of pain : official journal of the American Pain Society
-
Women develop chronic pain during their reproductive years more often than men, and estrogen and progesterone regulate this susceptibility. We tested whether brain progesterone receptor (PR) signaling regulates pain susceptibility. During the estrous cycle, animals were more sensitive to mechanical stimulus during the estrus stage than in the diestrus stage, suggesting a role for reproductive hormones, estrogen, and progesterone. ⋯ Targeting PRs may provide a novel therapeutic avenue to treat chronic pain and migraine in women. PERSPECTIVE: This article provides evidence for the role of progesterone receptors in regulating pain sensitivity and migraine susceptibility in females. Progesterone receptors may be a therapeutic target to treat chronic pain conditions more prevalent in women than men.
-
Deactivation of the medial prefrontal cortex (mPFC) has been broadly reported in both neuropathic pain models and human chronic pain patients. Several cellular mechanisms may contribute to the inhibition of mPFC activity, including enhanced GABAergic inhibition. The functional effect of GABAA(γ-aminobutyric acid type A)-receptor activation depends on the concentration of intracellular chloride in the postsynaptic neuron, which is mainly regulated by the activity of Na-K-2Cl cotransporter isoform 1 (NKCC1) and K-Cl cotransporter isoform 2 (KCC2), 2 potassium-chloride cotransporters that import and extrude chloride, respectively. ⋯ PERSPECTIVE: Chronic pain is associated with the presence of depolarizing GABAA current in the spinal cord, suggesting that pharmacological NKCC1 antagonism has analgesic effects. However, our results show that in neuropathic pain, GABAA current is actually hyperinhibitory in the mPFC, where it contributes to the mPFC functional deactivation. This suggests caution in the use of NKCC1 antagonism to treat pain.
-
Meta Analysis
Characterisation of common genetic variants in P2RX7 and their contribution to chronic pain conditions.
The adenosine triphosphate (ATP)-gated channel P2X7 is encoded by a gene enriched for common nonsynonymous variants. Many of these variants have functional cellular effects, and some have been implicated in chronic pain. In this study, we first systematically characterized all 17 common nonsynonymous variants using whole-cell patch clamp electrophysiology. ⋯ Cumulative allele count analysis did not provide additional insights. In conclusion, our results go beyond reproducing association for rs7958311 with chronic pain and suggest that its unique combination of gain-of-function in channel and loss-of-function in pore activity may explain why it is likely the only common P2RX7 variant with contribution to chronic pain. PERSPECTIVE: This study characterizes all common P2RX7 variants using cellular assays and statistical association analyses with chronic pain, with Markov state modeling of the most robustly associated variant.
-
Randomized Controlled Trial
Efficacy of home-based transcranial direct current stimulation over the primary motor cortex and dorsolateral prefrontal cortex in the disability due to pain in fibromyalgia: A factorial sham-randomized clinical study.
This randomized, double-blind, controlled clinical trial compared the effectiveness of home-based-(HB) active transcranial direct current stimulation (a-tDCS) over the left dorsolateral prefrontal cortex (l-DLPFC) or primary motor cortex (M1) with their respective sham-(s)-tDCS to determine whether a-tDCS would be more effective than s-tDCS in reducing pain and improving disability due to pain. The study included 102 patients with fibromyalgia aged 30 to 65 years old randomly assigned to 1 of 4 tDCS groups using a ratio of 2:1:2:1. The groups included l-DLPFC (a-tDCS, n = 34) and (s-tDCS, n = 17), or tDCS on the M1 (a-tDCS, n = 34) or (s-tDCS, n = 17). ⋯ PERSPECTIVE: These findings provide important insights: (1) HB-tDCS has effectively reduced pain scores and improved disability due to fibromyalgia. (2) The study provides evidence that HB-a-tDCS is a viable and effective therapeutic approach. (3) HB-a-tDCS over M1 improved the function of the descending pain inhibitory system and increased the heat pain threshold. Finally, our findings also emphasize that brain-derived neurotrophic factor, as an index of neuroplasticity, may serve as a valuable marker associated with changes in clinical pain measures. TRIAL REGISTRATION: Number NCT03843203.