American journal of physiology. Cell physiology
-
Am. J. Physiol., Cell Physiol. · May 2014
Delayed skin wound repair in proline-rich protein tyrosine kinase 2 knockout mice.
Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. ⋯ Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.
-
Am. J. Physiol., Cell Physiol. · Mar 2014
miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export.
Skeletal muscle atrophy is prevalent in chronic diseases, and microRNAs (miRs) may play a key role in the wasting process. miR-23a was previously shown to inhibit the expression of atrogin-1 and muscle RING-finger protein-1 (MuRF1) in muscle. It also was reported to be regulated by cytoplasmic nuclear factor of activated T cells 3 (NFATc3) in cardiomyocytes. The objective of this study was to determine if miR-23a is regulated during muscle atrophy and to evaluate the relationship between calcineurin (Cn)/NFAT signaling and miR-23a expression in skeletal muscle cells during atrophy. miR-23a was decreased in the gastrocnemius of rats with acute streptozotocin-induced diabetes, a condition known to increase atrogin-1 and MuRF1 expression and cause atrophy. ⋯ Finally, miR-23a was present in exosomes isolated from the media of C2C12 myotubes, and Dex increased its exosomal abundance. Dex did not alter the number of exosomes released into the media. We conclude that atrophy-inducing conditions downregulate miR-23a in muscle by mechanisms involving attenuated Cn/NFAT signaling and selective packaging into exosomes.
-
Am. J. Physiol., Cell Physiol. · Feb 2014
Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis.
Although the potential pathogenesis of nonalcoholic fatty liver disease (NAFLD) is unclear, increasing evidence indicates that endoplasmic reticulum (ER) stress may link free fatty acids to NAFLD. Since we previously reported that hepatic stimulator substance (HSS) could protect the liver from steatosis, this study is aimed to investigate whether HSS protection could be related with its inhibition on ER stress. The HSS gene was stably transfected into BEL-7402 hepatoma cells and effectively expressed in ER. ⋯ The protection provided by HSS to the SERCA is identical to that observed with N-acetyl-l-cysteine (NAC) and sodium dimercaptopropane sulfonate (Na-DMPS), which are two typical free radical scavengers. As a consequence, the rate of ER stress-mediated apoptosis in the HSS-expressing cells was significantly reduced. In conclusion, the protective effect of HSS against ER stress may be associated with the removal of ROS to restore the activity of the SERCA.
-
Am. J. Physiol., Cell Physiol. · Jan 2014
Aging increases CCN1 expression leading to muscle senescence.
Using microarray analysis, we found that aging sarcopenia is associated with a sharp increase in the mRNA of the matricellular protein CCN1 (Cyr61/CTGF/Nov). CCN1 mRNA was upregulated 113-fold in muscle of aged vs. young rats. CCN1 protein was increased in aging muscle in both rats (2.8-fold) and mice (3.8-fold). ⋯ Wnt-3a, a stimulator of CCN1 expression, was increased in serum from elderly humans (2.6-fold) and aged rodents (2.0-fold) compared with young controls. We transduced C2C12 myoblasts with wnt-3a and found that CCN1 protein was increased in a time- and dose-dependent manner. We conclude that in aging muscle, the circulating factor wnt-3a acts to increase CCN1 expression, prompting muscle senescence by activating cell arrest proteins.
-
Am. J. Physiol., Cell Physiol. · Oct 2013
Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle.
Volumetric muscle loss (VML) results in a large void deficient in the requisite materials for regeneration for which there is no definitive clinical standard of care. Autologous minced muscle grafts (MG), which contain the essential components for muscle regeneration, may embody an ideal tissue engineering therapy for VML. ⋯ Additionally, voluntary wheel running was shown to reduce the heightened accumulation of extracellular matrix deposition observed within the regenerated tissue of MG-repaired sedentary rats 8 wk postinjury (collagen 1% area: sedentary vs. runner, ∼41 vs. 30%), which may have been the result of an augmented inflammatory response [i.e., M1 (CCR7) and M2 (CD163) macrophage expression was significantly greater in runner than sedentary MG-repaired muscles 2 wk postinjury]. These findings support further exploration of autologous minced MGs for the treatment of VML.