American journal of physiology. Endocrinology and metabolism
-
Am. J. Physiol. Endocrinol. Metab. · May 2011
Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1.
Dramatic improvement of type 2 diabetes is commonly observed after bariatric surgery. However, the mechanisms behind the alterations in glucose homeostasis are still elusive. We examined the effect of duodenal-jejunal bypass (DJB), which maintains the gastric volume intact while bypassing the entire duodenum and the proximal jejunum, on glycemic control, β-cell mass, islet morphology, and changes in enteroendocrine cell populations in nonobese diabetic Goto-Kakizaki (GK) rats and nondiabetic control Wistar rats. ⋯ Compared with the sham-GK rats, the DJB-GK rats had an increased β-cell area and a decreased islet fibrosis, increased insulin secretion with increased GLP-1 secretion in response to a mixed meal, and an increased population of cells coexpressing GIP and GLP-1 in the jejunum anastomosed to the stomach. In contrast, DJB impaired glucose tolerance in nondiabetic Wistar rats. In conclusion, although DJB worsens glucose homeostasis in normal nondiabetic Wistar rats, it can prevent long-term aggravation of glucose homeostasis in diabetic GK rats in association with changes in intestinal enteroendocrine cell populations, increased GLP-1 production, and reduced β-cell deterioration.
-
Am. J. Physiol. Endocrinol. Metab. · May 2011
Characterization of the reproductive effects of the anorexigenic VGF-derived peptide TLQP-21: in vivo and in vitro studies in male rats.
VGF (nonacronymic) is a 68-kDa protein encoded by the homonymous gene, which is expressed abundantly at the hypothalamus and has been involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Circumstantial evidence has suggested that VGF might also participate in the control of reproduction. ⋯ In contrast, chronic administration of TLQP-21 to fed males at puberty resulted in partial desensitization and puberty delay. Finally, in adult (but not pubertal) males, TLQP-21 enhanced hCG-stimulated testosterone secretion by testicular tissue in vitro. In summary, our data are the first to document a complex and multifaceted mode of action of TLQP-21 at different levels of the male HPG axis with predominant stimulatory effects, thus providing a tenable basis for the (direct) reproductive role of this VGF-derived peptide.
-
Am. J. Physiol. Endocrinol. Metab. · Apr 2011
17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone) exhibits tissue selective anabolic activity: effects on muscle, bone, adiposity, hemoglobin, and prostate.
Selective androgen receptor modulators (SARMs) now under development can protect against muscle and bone loss without causing prostate growth or polycythemia. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone), a potent testosterone analog, may have SARM-like actions because, unlike testosterone, trenbolone does not undergo tissue-specific 5α-reduction to form more potent androgens. We tested the hypothesis that trenbolone-enanthate (TREN) might prevent orchiectomy-induced losses in muscle and bone and visceral fat accumulation without increasing prostate mass or resulting in adverse hemoglobin elevations. Male F344 rats aged 3 mo underwent orchiectomy or remained intact and were administered graded doses of TREN, supraphysiological testosterone-enanthate, or vehicle for 29 days. ⋯ The lowest doses of TREN successfully maintained prostate mass and hemoglobin concentrations at sham levels in both intact and orchiectomized animals, whereas supraphysiological testosterone-enanthate and high-dose TREN elevated prostate mass by 84 and 68%, respectively (P < 0.01). In summary, low-dose administration of the non-5α-reducible androgen TREN maintains prostate mass and hemoglobin concentrations near the level of shams while producing potent myotrophic actions in skeletal muscle and partial protection against orchiectomy-induced bone loss and visceral fat accumulation. Our findings indicate that TREN has advantages over supraphysiological testosterone and supports the need for future preclinical studies examining the viability of TREN as an option for androgen replacement therapy.
-
Am. J. Physiol. Endocrinol. Metab. · Mar 2011
Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype.
Uncertainty exists regarding the physiologically relevant fibroblast growth factor (FGF) receptor (FGFR) for FGF23 in the kidney and the precise tubular segments that are targeted by FGF23. Current data suggest that FGF23 targets the FGFR1c-Klotho complex to coordinately regulate phosphate transport and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production in the proximal tubule. In studies using the Hyp mouse model, which displays FGF23-mediated hypophosphatemia and aberrant vitamin D, deletion of Fgfr3 or Fgfr4 alone failed to correct the Hyp phenotype. ⋯ In Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, it partially corrected the hypophosphatemia (P(i) = 9.4 ± 0.9, 6.1 ± 0.2, 9.1 ± 0.4, and 8.0 ± 0.5 mg/dl in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), increased Na-phosphate cotransporter Napi2a and Napi2c and Klotho mRNA expression in the kidney, and markedly increased serum FGF23 levels (107 ± 20, 3,680 ± 284, 167 ± 22, and 18,492 ± 1,547 pg/ml in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), consistent with a compensatory response to the induction of end-organ resistance. Fgfr1 expression was unchanged in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice and was not sufficient to transduce the full effects of FGF23 in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. These studies suggest that FGFR1, FGFR3, and FGFR4 act in concert to mediate FGF23 effects on the kidney and that loss of FGFR function leads to feedback stimulation of Fgf23 expression in bone.
-
Am. J. Physiol. Endocrinol. Metab. · Jan 2011
Comparative StudyInduction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.
Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). ⋯ In rats, the absence of dietary carbohydrates per se does not induce ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.