American journal of physiology. Endocrinology and metabolism
-
Am. J. Physiol. Endocrinol. Metab. · Apr 2010
Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals.
Results from the Diabetes Prevention Program highlight the effectiveness of metformin or regular physical activity in the prevention of type 2 diabetes. Independently, metformin and exercise increase insulin sensitivity, but they have not been studied in combination. To assess the combined effects, insulin-resistant subjects (n = 9) matched for weight, body fat, and aerobic fitness were studied before any treatment (B), after 2-3 wk of 2,000 mg/day metformin (MET), and after metformin plus 40 min of exercise at 65% Vo(2peak) (MET + Ex). ⋯ Insulin sensitivity was 54% higher after Ex (P < 0.01), but there was no change with Met + Ex. Skeletal muscle AMPKalpha2 activity was elevated threefold (P < 0.01) after Ex, but there was no increase with MET + Ex. These findings suggest that the combination of short-term metformin treatment and an acute bout of exercise does not enhance insulin sensitivity, and the addition of metformin may attenuate the well-documented effects of exercise alone.
-
Am. J. Physiol. Endocrinol. Metab. · Mar 2010
Controlled Clinical TrialMetabolic effects of intensive insulin therapy in critically ill patients.
Our aim was to investigate the effects of glycemic control and insulin concentration on lipolysis, glucose, and protein metabolism in critically ill medical patients. For our methods, the patients were studied twice. In study 1, blood glucose (BG) concentrations were maintained between 7 and 9 mmol/l with intravenous insulin. ⋯ HI increased glucose disposal in the patients (HIHG, P = 0.001; HILG, P = 0.07 vs. study 1), but this was less than in controls receiving HI (P < 0.03). In conclusion, low-dose intravenous insulin administered to maintain BG between 7-9 mmol/l is sufficient to limit lipolysis and endogenous glucose R(a) and increase glucose R(d). Neither hyperinsulinemia nor normoglycemia had any protein-sparing effect.
-
Am. J. Physiol. Endocrinol. Metab. · Mar 2010
Dynamic insulin sensitivity index: importance in diabetes.
The classical minimal model (MM) index of insulin sensitivity, S(I), does not account for how fast or slow insulin action takes place. In a recent work, we proposed a new dynamic insulin sensitivity index, S(I)(D), which is able to take into account the dynamics of insulin action as well. The new index is a function of two MM parameters, namely S(I) and p(2), the latter parameter governing the speed of rise and decay of insulin action. ⋯ The results show that S(I)(D) is estimated more precisely than S(I) when using the Bayesian approach. In addition, the less labor-intensive Fisherian approach can still be used to obtain reliable point estimates of S(I)(D) but not of S(I). These results suggest that S(I)(D) yields a comprehensive, precise, and cost-effective assessment of insulin sensitivity in subjects with impaired insulin action like impaired glucose tolerant subjects or diabetic patients.
-
Am. J. Physiol. Endocrinol. Metab. · Mar 2010
LXR{beta} is the dominant LXR subtype in skeletal muscle regulating lipogenesis and cholesterol efflux.
Liver X receptors (LXRs) are important regulators of cholesterol, lipid, and glucose metabolism and have been extensively studied in liver, macrophages, and adipose tissue. However, their role in skeletal muscle is poorly studied and the functional role of each of the LXRalpha and LXRbeta subtypes in skeletal muscle is at present unknown. To study the importance of each of the receptor subtypes, myotube cultures derived from wild-type (WT) and LXRalpha and LXRbeta knockout (KO) mice were established. ⋯ Gene expression analysis using microarrays showed that very few genes other than the classical, well-known LXR target genes were regulated by LXR in skeletal muscle. The present study also showed that basal glucose uptake was increased in LXRbeta KO myotubes compared with WT myotubes, suggesting a role for LXRbeta in glucose metabolism in skeletal muscle. In conclusion, LXRbeta seems to be the main LXR subtype regulating lipogenesis and cholesterol efflux in skeletal muscle.
-
Am. J. Physiol. Endocrinol. Metab. · Feb 2010
Comparative StudyAICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC.
Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. ⋯ Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.