American journal of physiology. Endocrinology and metabolism
-
Am. J. Physiol. Endocrinol. Metab. · Jun 2008
Corticosteroids mediate fast feedback of the rat hypothalamic-pituitary-adrenal axis via the mineralocorticoid receptor.
The aim of this study was to investigate fast corticosteroid feedback of the hypothalamic-pituitary-adrenal (HPA) axis under basal conditions, in particular the role of the mineralocorticoid receptor. Blood samples were collected every 5 min from conscious rats at the diurnal peak, using an automated blood sampling system, and assayed for corticosterone. Feedback inhibition by rapidly increasing concentrations of ligand was achieved with an intravenous bolus of exogenous corticosteroid. ⋯ Intravenous administration of canrenoate (a mineralocorticoid receptor antagonist) also had rapid effects on the HPA axis, with an elevation of ACTH within 10 min and corticosterone within 20 min. The inhibitory effect of aldosterone was unaffected by pretreatment with the glucocorticoid receptor antagonist RU-38486 but blocked by the canrenoate. These data imply an important role for the mineralocorticoid receptor in fast feedback of basal HPA activity and suggest that mineralocorticoids can dynamically regulate basal corticosterone concentrations during the diurnal peak, a time of day when there is already a high level of occupancy of the cytoplasmic mineralocorticoid receptor.
-
Am. J. Physiol. Endocrinol. Metab. · May 2008
Inhibition of Ca2+ signaling and glucagon secretion in mouse pancreatic alpha-cells by extracellular ATP and purinergic receptors.
Glucagon secreted from pancreatic alpha-cells plays a critical role in glycemia, mainly by hepatic glucose mobilization. In diabetic patients, an impaired control of glucagon release can worsen glucose homeostasis. Despite its importance, the mechanisms that regulate its secretion are still poorly understood. ⋯ ATP-mediated inhibition of Ca2+ signaling was accompanied by a decrease in glucagon release from intact islets in contrast to the adenosine effect. Using pharmacological agonists, we found that only P2Y1 and A2A were likely involved in the inhibitory effect on Ca2+ signaling. All these findings indicate that extracellular ATP and purinergic stimulation are effective regulators of the alpha-cell function.
-
Am. J. Physiol. Endocrinol. Metab. · Apr 2008
Decreased clearance of serum retinol-binding protein and elevated levels of transthyretin in insulin-resistant ob/ob mice.
Serum retinol-binding protein (RBP4) is secreted by liver and adipocytes and is implicated in systemic insulin resistance in rodents and humans. RBP4 normally binds to the larger transthyretin (TTR) homotetramer, forming a protein complex that reduces renal clearance of RBP4. To determine whether alterations in RBP4-TTR binding contribute to elevated plasma RBP4 levels in insulin-resistant states, we investigated RBP4-TTR interactions in leptin-deficient ob/ob mice and high-fat-fed obese mice (HFD). ⋯ Hepatic TTR mRNA levels were elevated approximately twofold in ob/ob but not in HFD mice. Since elevated circulating RBP4 causes insulin resistance and glucose intolerance in mice, these findings suggest that increased TTR or alterations in RBP4-TTR binding may contribute to insulin resistance by stabilizing RBP4 at higher steady-state concentrations in circulation. Lowering TTR levels or interfering with RBP4-TTR binding may enhance insulin sensitivity in obesity and type 2 diabetes.
-
Am. J. Physiol. Endocrinol. Metab. · Feb 2008
PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle.
The aim of the present study was to test the hypothesis that peroxisome proliferator activated receptor-gamma coactivator (PGC) 1alpha is required for exercise-induced adaptive gene responses in skeletal muscle. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice performed a single treadmill-running exercise bout. Soleus and white gastrocnemius (WG) were obtained immediately, 2 h, or 6 h after exercise. ⋯ Exercise training increased cyt c, COXI, ALAS1, and HKII mRNA and protein levels equally in WT and KO animals, but cyt c, COXI, and ALAS1 expression remained approximately 20% lower in KO animals. In conclusion, lack of PGC-1alpha reduced resting expression of cyt c, COXI, and ALAS1 and exercise-induced cyt c mRNA expression. However, PGC-1alpha is not mandatory for training-induced increases in ALAS1, COXI, and cyt c expression, showing that factors other than PGC-1alpha can exert these adaptations.
-
Am. J. Physiol. Endocrinol. Metab. · Dec 2007
Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats.
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. ⋯ FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.