American journal of physiology. Endocrinology and metabolism
-
Am. J. Physiol. Endocrinol. Metab. · Nov 2005
Acute changes in fibrinogen metabolism and coagulation after hemorrhage in pigs.
Hemorrhagic coagulopathy is involved in the morbidity and mortality of trauma patients. Nonetheless, many aspects of the mechanisms underlying this disorder are poorly understood. We have therefore investigated changes in fibrinogen metabolism and coagulation function after a moderate hemorrhagic shock, using a new stable isotope approach. ⋯ These metabolic changes were accompanied by a reduction in blood clotting time to 92.7 +/- 1.6% of the baseline value by hemorrhage (P < 0.05). No changes were found in liver enzyme activities. We conclude that the observed changes in coagulation after hemorrhagic shock are mechanistically related to the acute acceleration of fibrinogen degradation.
-
Am. J. Physiol. Endocrinol. Metab. · Jul 2005
Comparative StudyProgression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats.
We have examined the progression of vascular and neural deficits in Zucker rats, Zucker diabetic fatty (ZDF) diabetic rats, and age-matched lean ZDF rats from 8 to 40 wk of age. Both the ZDF diabetic and Zucker rats were glucose intolerant at 8 wk of age. The Zucker rats did not become hyperglycemic but were hyperinsulinemic through 32 wk of age. ⋯ In contrast, vascular relaxation mediated by calcitonin gene-related peptide was impaired significantly after 28 wk of age in ZDF diabetic rats but not impaired in Zucker rats up to 40 wk of age. Markers of oxidative stress were differentially elevated in ZDF diabetic rats and Zucker rats. These data indicate that vascular and neural dysfunction develops in both Zucker and ZDF diabetic rats but at different rates, which may be the result of hyperglycemia.
-
Am. J. Physiol. Endocrinol. Metab. · Jun 2005
Food deprivation differentially modulates orexin receptor expression and signaling in rat hypothalamus and adrenal cortex.
Although starvation-induced biochemical and metabolic changes are perceived by the hypothalamus, the adrenal gland plays a key role in the integration of metabolic activity and energy balance, implicating feeding as a major synchronizer of rhythms in the hypothalamic-pituitary-adrenal (HPA) axis. Given that orexins are involved in regulating food intake and activating the HPA axis, we hypothesized that food deprivation, an acute challenge to the systems that regulate energy balance, should elicit changes in orexin receptor signaling at the hypothalamic and adrenal levels. Food deprivation induced orexin type 1 (OX1R) and 2 (OX2R) receptors at mRNA and protein levels in the hypothalamus, in addition to a fivefold increase in prepro-orexin mRNA. ⋯ Subsequent second-messenger studies (cAMP/IP3) have supported these findings. Our data indicate that food deprivation has differential effects on orexin receptor expression and their signaling characteristics at the hypothalamic and adrenocortical levels. These findings suggest orexins as potential metabolic regulators within the HPA axis both centrally and peripherally.
-
Am. J. Physiol. Endocrinol. Metab. · May 2005
Comparative StudyIntegrated model of hepatic and peripheral glucose regulation for estimation of endogenous glucose production during the hot IVGTT.
We have developed a new model to describe endogenous glucose kinetics during a labeled (hot) intravenous glucose tolerance test (IVGTT) to derive a time profile of endogenous glucose production (EGP). We reanalyzed data from a previously published study (P. Vicini, J. ⋯ The model additionally provided an estimate of the time course of EGP showing almost immediate inhibition, followed by a secondary inhibitory effect caused by infusion of insulin, and a large overshoot as EGP returns to its basal value. Our estimates show very good agreement with those obtained via deconvolution and the model-independent TTR clamp technique. These results suggest that the new integrated model can serve as a simple one-step approach to obtain metabolic indexes while also providing a parametric description of EGP.
-
Am. J. Physiol. Endocrinol. Metab. · Oct 2004
Clinical TrialMinimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method.
Measuring insulin sensitivity during the physiological milieu of oral glucose perturbation, e.g., a meal or an oral glucose tolerance test, would be extremely valuable but difficult since the rate of appearance of absorbed glucose is unknown. The reference method is a tracer two-step one: first, the rate of appearance of glucose (R(a meal)(ref)) is reconstructed by employing the tracer-to-tracee ratio clamp technique with two tracers and a model of non-steady-state glucose kinetics; next, this R(a meal)(ref) is used as the known input of a model describing insulin action on glucose kinetics to estimate insulin sensitivity (SI(ref)). Recently, a nontracer method based on the oral minimal model (OMM) has been proposed to estimate simultaneously the above quantities, denoted R(a meal) and SI, respectively, from plasma glucose and insulin concentrations measured after an oral glucose perturbation. ⋯ It is thus important to establish whether or not the "nontracer" R(a meal) and SI compare well with the "tracer" R(a meal)(ref) and SI(ref). We do this comparison on a database of 88 subjects, and it is very satisfactory: R(a meal) profiles agree well with the R(a meal)(ref) and correlation of SI(ref) with SI is r = 0.86 (P < 0.0001). We conclude that OMM candidates as a reliable tool to measure both the rate of glucose absorption and insulin sensitivity from oral glucose tests without employing tracers.