American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Sep 2014
Interference of angiotensin II and enalapril with hepatic blood flow regulation.
Acute reduction of portal vein blood flow (Qpv) increases hepatic arterial perfusion (Qha) [the hepatic arterial buffer response (HABR)]. Angiotensin II (AT-II) reduces Qpv, but its effect on HABR is not known. We explored interactions of AT-II and enalapril with hepatic blood flow regulation. ⋯ AT-II infusion reduces portal flow in parallel with cardiac output and induces a dose-dependent redistribution of flow, favoring brain, hepatic artery, and peripheral tissues at the expense of renal perfusion. During HABR, AT-II decreases Cha but increases Qha compensation, likely as result of increased hepatic arterial perfusion pressure. Enalapril had no effect on HABR.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Sep 2014
Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis.
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. ⋯ The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · May 2014
Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity.
Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. ⋯ When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Apr 2014
Fat deposition in the tunica muscularis and decrease of interstitial cells of Cajal and nNOS-positive neuronal cells in the aged rat colon.
Little is known about the time course of aging on interstitial cells of Cajal (ICC) of colon. The aim of this study was to investigate the change of morphology, ICC, and neuronal nitric oxide synthase (nNOS)-immunoreactive cells in the aged rat. The proximal colon of 344 Fischer rats at four different ages (6, 31, 74 wk, and 2 yr) were studied. ⋯ The area of intramuscular fat deposition significantly increased with age after 31 wk. c-Kit-immunoreactive ICC and nNOS-immunoreactive neurons and nerve fibers significantly declined with age. mRNA and protein expression of c-kit and nNOS decreased with aging. The functional study showed that the spontaneous contractility was decreased in aged rat, whereas EFS responses in the presence of atropine and L-NG-Nitroarginine methyl ester were increased in aged rat. In conclusion, the decrease of proportion of proper smooth muscle, the density of ICC and nNOS-immunoreactive neuronal fibers, and the number of nNOS-immunoreactive neurons during the aging process may explain the aging-associated colonic dysmotility.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Mar 2014
ReviewGranulocyte macrophage colony-stimulating factor and the intestinal innate immune cell homeostasis in Crohn's disease.
Current literature consolidates the view of Crohn's disease (CD) as a form of immunodeficiency highlighting dysregulation of intestinal innate immunity in the pathogenesis of CD. Intestinal macrophages derived from blood monocytes play a key role in sustaining the innate immune homeostasis in the intestine, suggesting that the monocyte/macrophage compartment might be an attractive therapeutic target for the management of CD. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that also promotes myeloid cell activation, proliferation, and differentiation. ⋯ However, the role of GM-CSF in immune and inflammatory reactions in the intestine is not well defined. Beneficial effects exerted by GM-CSF during intestinal inflammation could relate to modulation of the mucosal barrier function in the intestine, including epithelial cell proliferation, survival, restitution, and immunomodulatory actions. The aim of this review is to summarize potential mechanistic roles of GM-CSF in intestinal innate immune cell homeostasis and to highlight its central role in maintenance of the intestinal immune barrier in the context of immunodeficiency in CD.