American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Mar 2014
Chorioamnionitis-induced fetal gut injury is mediated by direct gut exposure of inflammatory mediators or by lung inflammation.
Intra-amniotic exposure to proinflammatory agonists causes chorioamnionitis and fetal gut inflammation. Fetal gut inflammation is associated with mucosal injury and impaired gut development. We tested whether this detrimental inflammatory response of the fetal gut results from a direct local (gut derived) or an indirect inflammatory response mediated by the chorioamnion/skin or lung, since these organs are also in direct contact with the amniotic fluid. ⋯ Inflammation of the fetal gut after selective LPS instillation in the lungs caused only mild disruption of ZO-1, loss in epithelial cell integrity, and impaired epithelial differentiation. LPS exposure of the amnion/skin epithelia did not result in gut inflammation or morphological, structural, and functional changes. Our results indicate that the detrimental consequences of chorioamnionitis on fetal gut development are the combined result of local gut and lung-mediated inflammatory responses.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Feb 2014
Randomized Controlled TrialXenin-25 delays gastric emptying and reduces postprandial glucose levels in humans with and without type 2 diabetes.
Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of glucose-dependent insulinotropic polypeptide (GIP)-producing enteroendocrine cells. In animals, Xen regulates gastrointestinal function and glucose homeostasis, typically by initiating neural relays. However, little is known about Xen action in humans. ⋯ Intense staining for Xen receptors was detected on PGP9.5-positive nerve fibers in the longitudinal muscle of the human stomach. Thus Xen reduces gastric emptying in humans with and without T2DM, probably via a neural relay. Moreover, endogenous GLP-1 may not be a major enhancer of insulin secretion in healthy humans under physiological conditions.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Feb 2014
Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. ⋯ Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2014
Irritable bowel syndrome-diarrhea: characterization of genotype by exome sequencing, and phenotypes of bile acid synthesis and colonic transit.
The study objectives were: to mine the complete exome to identify putative rare single nucleotide variants (SNVs) associated with irritable bowel syndrome (IBS)-diarrhea (IBS-D) phenotype, to assess genes that regulate bile acids in IBS-D, and to explore univariate associations of SNVs with symptom phenotype and quantitative traits in an independent IBS cohort. Using principal components analysis, we identified two groups of IBS-D (n = 16) with increased fecal bile acids: rapid colonic transit or high bile acids synthesis. DNA was sequenced in depth, analyzing SNVs in bile acid genes (ASBT, FXR, OSTα/β, FGF19, FGFR4, KLB, SHP, CYP7A1, LRH-1, and FABP6). ⋯ Variations in KLB (rs1015450, downstream) and FGFR4 [rs434434 (intronic), rs1966265, and rs351855 (nonsynonymous)] were associated with colonic transit (rs1966265; P = 0.043), fecal bile acids (rs1015450; P = 0.064), and principal components analysis groups (all 3 FGFR4 SNVs; P < 0.05). In the 633-person cohort, FGFR4 rs434434 was associated with symptom phenotype (P = 0.027) and rs1966265 with 24-h colonic transit (P = 0.066). Thus exome sequencing identified additional variants in KLB and FGFR4 associated with bile acids or colonic transit in IBS-D.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2014
The role of receptor tyrosine kinase activation in cholangiocytes and pulmonary vascular endothelium in experimental hepatopulmonary syndrome.
Pulmonary vascular dilation and angiogenesis underlie experimental hepatopulmonary syndrome (HPS) induced by common bile duct ligation (CBDL) and may respond to receptor tyrosine kinase (RTK) inhibition. Vascular endothelial growth factor-A (VEGF-A) expression occurs in proliferating cholangiocytes and pulmonary intravascular monocytes after CBDL, the latter contributing to angiogenesis. CBDL cholangiocytes also produce endothelin-1 (ET-1), which triggers lung vascular endothelin B receptor-mediated endothelial nitric oxide synthase (eNOS) activation and pulmonary intravascular monocyte accumulation. ⋯ Sorafenib inhibited VEGF-A-mediated signaling and angiogenesis in vivo and in vitro and improved arterial gas exchange and intrapulmonary shunting. RTK activation in experimental HPS upregulates cholangiocyte proliferation and ET-1 production, leading to pulmonary microvascular eNOS activation, intravascular monocyte accumulation, and VEGF-A-mediated angiogenic signaling pathways. These findings identify a novel mechanism in cholangiocytes through which RTK inhibition ameliorates experimental HPS.