American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Sep 2013
Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex.
Nutritional stimulation of the cholecystokinin-1 receptor (CCK-1R) and nicotinic acetylcholine receptor (nAChR)-mediated vagal reflex was shown to reduce inflammation and preserve intestinal integrity. Mast cells are important early effectors of the innate immune response; therefore modulation of mucosal mast cells is a potential therapeutic target to control the acute inflammatory response in the intestine. The present study investigates intestinal mast cell responsiveness upon nutritional activation of the vagal anti-inflammatory reflex during acute inflammation. ⋯ Accordingly, release of β-hexosaminidase by MC/9 mast cells following LPS or IgE-ovalbumin complexes was dose dependently inhibited by acetylcholine and nicotine. Application of GSK1345038A, a specific agonist of the nAChR α7, in bone marrow-derived mast cells from nAChR β2-/- and wild types indicated that cholinergic inhibition of mast cells is mediated by the nAChR α7 and is independent of the nAChR β2. Together, the present study reveals mucosal mast cells as a previously unknown target of the nutritional anti-inflammatory vagal reflex.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Aug 2013
Desvenlafaxine succinate ameliorates visceral hypersensitivity but delays solid gastric emptying in rats.
Desvenlafaxine succinate (DVS) is a novel serotonin and norepinephrine reuptake inhibitor. The aim of this study was to investigate the effects of DVS on visceral hypersensitivity and solid gastric emptying in a rodent model of gastric hyperalgesia. Twenty-eight gastric hyperalgesia rats and 20 control rats were used. ⋯ DVS at a dose of 1 mg/kg reduced visceral hypersensitivity only during GD at 60 mmHg. 3) Neither WAY-100635 nor ketanserin blocked the effect of DVS on visceral sensitivity. 4) DVS at 30 mg/kg significantly increased plasma NE level (P = 0.012 vs. saline). 5) DVS at 30 mg/kg significantly delayed solid gastric emptying (P < 0.05 vs. saline). We conclude that DVS reduces visceral sensitivity in a rodent model of visceral hypersensitivity and delays solid gastric emptying. Caution should be made when DVS is used for treating patients.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jul 2013
Cicletanine stimulates eNOS phosphorylation and NO production via Akt and MAP kinase/Erk signaling in sinusoidal endothelial cells.
The function of the endothelial isoform of nitric oxide synthase (eNOS) and production of nitric oxide (NO) is altered in a number of disease states. Pharmacological approaches to enhancing NO synthesis and thus perhaps endothelial function could have substantial benefits in patients. We analyzed the effect of cicletanine, a synthetic pyridine with potent vasodilatory characteristics, on eNOS function and NO production in normal (liver) and injured rat sinusoidal endothelial cells, and we studied the effect of cicletanine-induced NO on stellate cell contraction and portal pressure in an in vivo model of liver injury. ⋯ Finally, administration of cicletanine to mice with portal hypertension induced by bile duct ligation led to reduction of portal pressure. The data indicate that cicletanine might improve eNOS activity in injured sinusoidal endothelial cells and likely activates hepatic stellate cell NO/PKG signaling. It raises the possibility that cicletanine could improve intrahepatic vascular function in portal hypertensive patients.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jul 2013
Hepatocytes produce TNF-α following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase- and c-Src-dependent manner.
Cell line studies have previously demonstrated that hypoxia-reoxygenation (H/R) leads to the production of NADPH oxidase 1 and 2 (NOX1 and NOX2)-dependent reactive oxygen species (ROS) required for the activation of c-Src and NF-κB. We now extend these studies into mouse models to evaluate the contribution of hepatocytes to the NOX- and c-Src-dependent TNF-α production that follows H/R in primary hepatocytes and liver ischemia-reperfusion (I/R). In vitro, c-Src-deficient primary hepatocytes produced less ROS and TNF-α following H/R compared with controls. ⋯ However, NOX1 deletion alone had little effect on I/R-induced TNF-α. Thus Kupffer cell-derived factors and NOX2 act to suppress hepatic NOX1-dependent TNF-α production. We conclude that c-Src and NADPH oxidase components are necessary for redox-mediated production of TNF-α following liver I/R and that hepatocytes play an important role in this process.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jun 2013
Transient receptor potential ankyrin 1 mediates chronic pancreatitis pain in mice.
Chronic pancreatitis (CP) is a devastating disease characterized by persistent and uncontrolled abdominal pain. Our lack of understanding is partially due to the lack of experimental models that mimic the human disease and also to the lack of validated behavioral measures of visceral pain. The ligand-gated cation channel transient receptor potential ankyrin 1 (TRPA1) mediates inflammation and pain in early experimental pancreatitis. ⋯ Inflammatory changes and pain indexes were significantly reduced in trpa1(-/-) mice. In conclusion, we have characterized in mice a model of CP that resembles the human condition, with marked histological changes and behavioral measures of pain. We have demonstrated, using novel and objective pain measurements, that TRPA1 mediates inflammation and visceral hypersensitivity in CP and could be a therapeutic target for the treatment of sustained inflammatory abdominal pain.