American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Nov 2009
Caveolin-1 mediates endotoxin inhibition of endothelin-1-induced endothelial nitric oxide synthase activity in liver sinusoidal endothelial cells.
Endothelin-1 (ET-1) plays a key role in the regulation of endothelial nitric oxide synthase (eNOS) activation in liver sinusoidal endothelial cells (LSECs). In the presence of endotoxin, an increase in caveolin-1 (Cav-1) expression impairs ET-1/eNOS signaling; however, the molecular mechanism is unknown. The objective of this study was to investigate the molecular mechanism of Cav-1 in the regulation of LPS suppression of ET-1-mediated eNOS activation in LSECs by examining the effect of caveolae disruption using methyl-beta-cyclodextrin (CD) and filipin. ⋯ Both the combined treatment with CD and ET-1 (CD + ET-1) and with filipin and ET-1 stimulated eNOS activity; however, pretreatment with endotoxin (LPS) abrogated these effects. Following LPS pretreatment, CD + ET-1 failed to stimulate eNOS activity (+51%, P > 0.05), which contributed to the reduced levels of eNOS-Ser1177 phosphorylation and eNOS-Thr495 dephosphorylation, the LPS/CD-induced overexpression and translocation of Cav-1 in the perinuclear region, and the increased perinuclear colocalization of eNOS with Cav-1. These results supported the hypothesis that Cav-1 mediates the action of endotoxin in suppressing ET-1-mediated eNOS activation and demonstrated that the manipulation of caveolae produces significant effects on ET-1-mediated eNOS activity in LSECs.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Nov 2009
Regulation of HSP60 and the role of MK2 in a new model of severe experimental pancreatitis.
The objective of this study was to investigate the role of MAPKAP kinase 2 (MK2) and heat shock protein (HSP) HSP60 in the pathogenesis of a new model of severe acute pancreatitis (AP). MK2 plays a significant role in the regulation of cytokines. It has been shown that induction and expression of several HSPs can protect against experimental pancreatitis. ⋯ Especially, HSP60 was robustly elevated after Cer+LPS treatment, in both MK2-/- and wild-type mice. Thus the homozygous deletion of the MK2 gene ameliorates the severity of acute pancreatitis and accompanying systemic inflammatory reactions in a new model of severe acute pancreatitis. Our data support the hypothesis that MK2 participates in the multifactorial regulation of early inflammatory responses in AP, independently of the regulation of stress proteins like HSP25 and HSP60 and most likely due to its effect on cytokine regulation.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Sep 2009
Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.
Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. ⋯ Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jul 2009
TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus.
Sensitization of esophageal sensory afferents by inflammatory mediators plays an important role in esophageal nociception. We have shown esophageal mast cell activation induces long-lasting mechanical hypersensitivity in vagal nodose C-fibers. However, the roles of mast cell mediators and downstream ion channels in this process are unclear. ⋯ This was mimicked by PAR2-activating peptide, which sustained for 90 min after wash, but not by PAR2 reverse peptide. TRPA1 inhibitor HC-030031 pretreatment significantly inhibited mechanical hypersensitivity induced by either mast cell activation or PAR2 agonist. Collectively, our data provide new evidence that sensitizing TRPA1 via a PAR2-dependent mechanism plays an important role in mast cell activation-induced mechanical hypersensitivity of vagal nodose C-fibers in guinea pig esophagus.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jun 2009
Randomized Controlled TrialDo corticotropin releasing factor-1 receptors influence colonic transit and bowel function in women with irritable bowel syndrome?
Corticotropin releasing factor (CRF), a mediator of stress response, alters gastrointestinal (GI) functions. Stress-related changes in colonic motility are blocked by selective CRF(1) receptor antagonists. Our aim was to assess whether modulation of central and peripheral CRF(1) receptors affects colonic transit and bowel function in female patients with diarrhea-predominant irritable bowel syndrome (D-IBS). ⋯ No safety issues were identified. We conclude that in women with D-IBS, pexacerfont, 25 or 100 mg qd, does not significantly alter colonic or other regional transit or bowel function. The role of central and peripheral CRF(1) receptors in bowel function in D-IBS requires further study.