American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Aug 2006
Agonists of cannabinoid receptor 1 and 2 inhibit experimental colitis induced by oil of mustard and by dextran sulfate sodium.
Oil of mustard (OM) is a potent neuronal activator that is known to elicit visceral hyperalgesia when given intracolonically, but the full extent to which OM is also proinflammatory in the gastrointestinal tract is not known. We have previously shown that male CD-1 mice given a single administration of 0.5% OM develop a severe colitis that is maximum at day 3 and that gradually lessens until essentially absent by day 14. OM-induced neuronal stimulation is reported to be reduced by cannabinoid agonists, and cannabinoid receptor 1 (CB1R)-/- mice have exacerbated experimental colitis. ⋯ CB2R immunostaining was more marked in infiltrated immune cells in OM colitis. These findings validate the OM colitis model with respect to the DSS model and provide strong support to the emerging idea that cannabinoid receptor activation mediates protective mechanisms in experimental colitis. The demonstration of CB1R agonist effects in colitis support the neurogenic nature of the OM-induced colitis model and reinforce the importance of neuronal activation in intestinal inflammation.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · May 2006
Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis.
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. ⋯ Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Feb 2006
Differential effect of imipenem treatment on injury caused by cecal ligation and puncture in wild-type and NK cell-deficient beta(2)-microgloblin knockout mice.
Our previous studies showed that beta(2)-microglobulin knockout mice treated with anti-asialoGM1 (beta2MKO/alphaAsGM1 mice) are resistant to injury caused by cecal ligation and puncture (CLP). However, CLP-induced injury is complex. Potential mechanisms of injury include systemic infection, cecal ischemia, and translocation of bacterial toxins such as endotoxin and superantigens. ⋯ However, all wild-type mice, whether treated with saline or imipenem, died by 42 h after CLP and had significant hypothermia, metabolic acidosis, and high plasma concentrations of the cytokines interleukin-6, macrophage inflammatory protein-2, and keratinocyte-derived chemokine. beta2MKO/alphaAsGM1 mice showed 40% long-term survival, which was increased to 90% by imipenem treatment. beta2MKO/alphaAsGM1 mice had less hypothermia, decreased metabolic acidosis, and lower cytokine concentrations at 18 h after CLP compared with wild-type mice. These results suggest that infection is not the major cause of mortality for wild-type mice in our model of CLP. Other mechanisms of injury such as cecal ischemia or translocation of microbial toxins may be more important. beta2MKO/alphaAsGM1 mice appear resistant to these early, non-infection-related causes of CLP-induced injury but showed delayed mortality associated with bacterial dissemination, which was ablated by treatment with imipenem.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Feb 2006
Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability.
The effects of physiologically relevant increase in temperature (37-41 degrees C) on intestinal epithelial tight junction (TJ) barrier have not been previously studied. Additionally, the role of heat-shock proteins (HSPs) in the regulation of intestinal TJ barrier during heat stress remains unknown. Because heat-induced disturbance of intestinal TJ barrier could lead to endotoxemia and bacterial translocation during physiological thermal stress, the purpose of this study was to investigate the effects of modest, physiologically relevant increases in temperature (37-41 degrees C) on intestinal epithelial TJ barrier and to examine the protective role of HSPs on intestinal TJ barrier. ⋯ Inhibition of HSP expression prevented the compensatory upregulation of occludin protein expression and produced a marked disruption in junctional localization of occludin protein during heat stress. In conclusion, our findings demonstrate for the first time that a modest, physiologically relevant increase in temperature causes an increase in intestinal epithelial TJ permeability. Our data also show that HSPs play an important protective role in preventing the heat-induced disruption of intestinal TJ barrier and suggest that HSP mediated upregulation of occludin expression may be an important mechanism involved in the maintenance of intestinal epithelial TJ barrier function during heat stress.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2006
Clinical TrialAssessment of intraluminal impedance for the detection of pharyngeal bolus flow during swallowing in healthy adults.
Intraluminal impedance, a nonradiological method for assessing bolus flow within the gut, may be suitable for investigating pharyngeal disorders. This study evaluated an impedance technique for the detection of pharyngeal bolus flow during swallowing. Patterns of pharyngoesophageal pressure and impedance were simultaneously recorded with videofluoroscopy in 10 healthy volunteers during swallowing of liquid, semisolid, and solid boluses. ⋯ Patterns of intraluminal impedance recorded in the pharynx during bolus swallowing are therefore more complex than those in the esophagus. During swallowing, mucosal contact between the tongue base and posterior pharyngeal wall prolongs the duration of pharyngeal impedance drop, leading to overestimation of bolus tail timing. Therefore, we conclude that intraluminal impedance measurement does not accurately reflect the bolus transit in the pharynx but does accurately reflect bolus transit across the UES and below.