American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Nov 2018
HIV transgene expression impairs K+ channel function in the pulmonary vasculature.
Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH); however, the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyze whether the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild-type (WT) mice were used. ⋯ Although we found pulmonary vascular remodeling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Oct 2018
ReviewEvolution of ARDS biomarkers: Will metabolomics be the answer?
To date, there is no clinically agreed-upon diagnostic test for acute respiratory distress syndrome (ARDS): the condition is still diagnosed on the basis of a constellation of clinical findings, laboratory tests, and radiological images. Development of ARDS biomarkers has been in a state of continuous flux during the past four decades. To address ARDS heterogeneity, several studies have recently focused on subphenotyping the disease on the basis of observable clinical characteristics and associated blood biomarkers. ⋯ Generally, the ARDS metabolomics studies focused on identification of differentiating metabolites for diagnosing ARDS, but they were performed to different standards in terms of sample size, selection of control cohort, type of specimens collected, and measuring technique utilized. Virtually none of these studies have been properly validated to identify true metabolomics biomarkers of ARDS. Though in their infancy, metabolomics studies exhibit promise to unfold the biological processes underlying ARDS and, in our opinion, have great potential for pushing forward our present understanding of ARDS.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2018
Damage-associated molecular patterns in resuscitated hemorrhagic shock are mitigated by peritoneal fluid administration.
Conventional resuscitation (CR) of hemorrhagic shock (HS), a significant cause of trauma mortality, is intravenous blood and fluids. CR restores central hemodynamics, but vital organ flow can drop, causing hypoperfusion, hypoxia, damage-associated molecular patterns (DAMPs), and remote organ dysfunction (i.e., lung). CR plus direct peritoneal resuscitation (DPR) prevents intestinal and hepatic hypoperfusion. ⋯ The data suggest that gut-derived DAMPs can be modulated by adjunctive DPR to prevent activation of lung TLR-4-mediated processes. Also, DPR improved lung blood flow and reduced lung tissue injury. Adjunctive DPR in HS/CR potentially improves morbidity and mortality by downregulating the systemic DAMP response.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2018
Pulmonary artery smooth muscle cell HIF-1α regulates endothelin expression via microRNA-543.
Pulmonary artery smooth muscle cells (PASMCs) express endothelin (ET-1), which modulates the pulmonary vascular response to hypoxia. Although cross-talk between hypoxia-inducible factor-1α (HIF-1α), an O2-sensitive transcription factor, and ET-1 is established, the cell-specific relationship between HIF-1α and ET-1 expression remains incompletely understood. We tested the hypotheses that in PASMCs 1) HIF-1α expression constrains ET-1 expression, and 2) a specific microRNA (miRNA) links HIF-1α and ET-1 expression. ⋯ Compared with controls, protein expression of HIF-1α and Twist-related protein-1 (TWIST1) was decreased ( P < 0.05), and miRNA-543 and ET-1 expression increased ( P < 0.001) in hPASMCs from patients with IPAH. Thus, in PASMCs, loss of HIF-1α increases miRNA-543, which decreases Twist expression, leading to an increase in PASMC ET-1 expression. This previously undescribed link between HIF-1α and ET-1 via miRNA-543 mediated Twist suppression represents another layer of molecular regulation that might determine pulmonary vascular tone.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Sep 2018
NMDA receptor activation inhibits the antifibrotic effect of BM-MSCs on bleomycin-induced pulmonary fibrosis.
Endogenous glutamate (Glu) release and N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation are associated with lung injury in different animal models. However, the underlying mechanism is unclear. Bone marrow-derived mesenchymal stem cells (BM-MSCs), which show potential use for immunomodulation and tissue protection, play a protective role in pulmonary fibrosis (PF) process. ⋯ Moreover, NMDAR activation inhibited BM-MSC migration by downregulating the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 signaling axis. NMDAR activation aggravated the transforming growth factor-β1-induced extracellular matrix production in alveolar epithelial cells and fibroblasts through the paracrine effects of BM-MSCs. In summary, these findings suggested that NMDAR activation-mediated Glu excitotoxicity induced by BLM in BM-MSCs abolished the therapeutic effects of normal BM-MSCs transplantation on BLM-induced PF.