American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jul 2008
Paradoxical role of alveolar macrophage-derived granulocyte-macrophage colony-stimulating factor in pulmonary host defense post-bone marrow transplantation.
Impaired host defense post-bone marrow transplant (BMT) is related to overproduction of prostaglandin E(2) (PGE(2)) by alveolar macrophages (AMs). We show AMs post-BMT overproduce granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas GM-CSF in lung homogenates is impaired both at baseline and in response to infection post-BMT. Homeostatic regulation of GM-CSF may occur by hematopoietic/structural cell cross talk. ⋯ GM-CSF-/- BMT neutrophils also showed improved bacterial killing. Although genetic ablation of GM-CSF in hematopoietic cells post-BMT improved host defense, transplantation of wild-type bone marrow into GM-CSF-/- recipients demonstrated that parenchymal cell-derived GM-CSF is necessary for effective innate immune responses post-BMT. These results highlight the complex regulation of GM-CSF and innate immunity post-BMT.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2008
Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration.
Organ regeneration in mammals is hypothesized to require a functional pool of stem or progenitor cells, but the role of these cells in lung regeneration is unknown. Whereas postnatal regeneration of alveolar tissue has been attributed to type II alveolar epithelial cells (AECII), we reasoned that bronchioalveolar stem cells (BASCs) have the potential to contribute substantially to this process. To test this hypothesis, unilateral pneumonectomy (PNX) was performed on adult female C57/BL6 mice to stimulate compensatory lung regrowth. ⋯ Quantitative analysis using a systems biology model was used to evaluate the potential contribution of BASCs and AECII. The model demonstrated that BASC proliferation and differentiation contributes between 0 and 25% of compensatory alveolar epithelial (type I and II cell) regrowth, demonstrating that regeneration requires a substantial contribution from AECII. The observed cell kinetic profiles can be reconciled using a dual-compartment (BASC and AECII) proliferation model assuming a linear hierarchy of BASCs, AECII, and AECI cells to achieve lung regrowth.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2008
Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection.
Recent evidence suggests that dysfunctional type II alveolar epithelial cells (AECs) contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Based on the hypothesis that disease-causing mutations in surfactant protein C (SFTPC) provide an important paradigm for studying IPF, we investigated a potential mechanism of AEC dysfunction suggested to result from mutant SFTPC expression: induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We evaluated biopsies from 23 IPF patients (including 3 family members with L188Q SFTPC mutations, 10 individuals with familial interstitial pneumonia without SFTPC mutations, and 10 individuals with sporadic IPF) and sections from 10 control lungs. ⋯ Herpesvirus protein expression was found in AECs from 15/23 IPF patients and colocalized with UPR markers in AECs from these patients. ER stress and UPR activation are found in the alveolar epithelium in patients with IPF and could contribute to disease progression. Activation of these pathways may result from altered surfactant protein processing or chronic herpesvirus infection.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2008
PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis.
Pulmonary fibrosis is characterized by alterations in fibroblast phenotypes resulting in excessive extracellular matrix accumulation and anatomic remodeling. Current therapies for this condition are largely ineffective. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear hormone receptor superfamily, the activation of which produces a number of biological effects, including alterations in metabolic and inflammatory responses. ⋯ In addition, PPAR-gamma agonists, including a constitutively active PPAR-gamma construct (VP16-PPAR-gamma), inhibit the ability of transforming growth factor-beta1 to induce myofibroblast differentiation and collagen secretion. PPAR-gamma agonists also inhibit fibrosis in a murine model, even when administration is delayed until after the initial inflammation has largely resolved. These observations indicate that PPAR-gamma is an important regulator of fibroblast/myofibroblast activation and suggest a role for PPAR-gamma ligands as novel therapeutic agents for fibrotic lung diseases.