American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jul 2007
Developmental differences in the responses of IL-6 and IL-13 transgenic mice exposed to hyperoxia.
Our previous work has shown that adult mice with overexpression of IL-6 and IL-13 in the lung have enhanced survival in hyperoxia associated with reduced hyperoxia-induced lung injury and cell death. We hypothesized that there are developmental differences in these responses in the adult vs. the newborn (NB) animal, and these responses have clinical relevance in the human NB. We compared the responses to 100% O(2) of NB IL-6 and IL-13 transgenic mice with wild-type littermate controls by evaluating mortality, lung tissue TUNEL staining, and mRNA expression using RT-PCR. ⋯ Furthermore, tracheal aspirate levels of IL-6 were significantly increased in premature neonates with respiratory distress syndrome who had an adverse outcome (bronchopulmonary dysplasia/death). In contrast to the protective effects in adults, there was no survival advantage to the NB IL-13 mice in hyperoxia. These findings imply that caution should be exercised in extrapolating results from the adult to the NB.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2007
MLCK210 gene knockout or kinase inhibition preserves lung function following endotoxin-induced lung injury in mice.
Barrier dysfunction, involving the endothelium or epithelium, is implicated in the pathophysiology of many disease states, including acute and ventilator-associated lung injury. Evidence from cell culture, in vivo and clinical studies, has identified myosin light chain kinase as a drug discovery target for such diseases. Here, we measured disease-relevant end points to test the hypothesis that inhibition of myosin light chain kinase is a potential therapeutic target for treatment of barrier dysfunction resulting from acute lung injury. ⋯ This protective effect provided by the small molecule inhibitor of myosin light chain kinase is present when the inhibitor is administered during a clinically relevant injury paradigm after endotoxin exposure. Treatment with inhibitor confers additional protection against acute lung injury to that provided by a standard protective mode of ventilation. These results support the hypothesis that myosin light chain kinase is a potential therapeutic target for acute lung injury and provide clinical end points of arterial blood gases and pulmonary compliance that facilitate the direct extrapolation of these studies to measures used in critical care medicine.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Jun 2007
Pneumocystis stimulates MCP-1 production by alveolar epithelial cells through a JNK-dependent mechanism.
Pneumocystis carinii is an opportunistic fungal pathogen that causes pneumonia (PCP) in immunocompromised individuals. Recent studies have demonstrated that the host's immune response is clearly responsible for the majority of the pathophysiological changes associated with PCP. P. carinii interacts closely with alveolar epithelial cells (AECs); however, the nature and pathological consequences of the epithelial response remain poorly defined. ⋯ Furthermore, delivery of a JNK inhibitory peptide specifically to pulmonary epithelial cells using a recombinant adenovirus vector blocked the early lung MCP-1 response following intratracheal instillation of infectious P. carinii. JNK inhibition did not affect P. carinii-stimulated production of macrophage inflammatory protein-2 in vitro or in vivo, indicating that multiple signaling pathways are activated in P. carinii-stimulated AECs. These data demonstrate that AECs respond to P. carinii in a proinflammatory manner that may contribute to the generation of immune-mediated lung injury.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2007
MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production.
Cigarette smoking, a major risk factor for chronic obstructive pulmonary disease, can cause airway inflammation, airway narrowing, and loss of elasticity, leading to chronic airflow limitation. In this report, we sought to define the signaling pathways activated by smoke and to identify molecules responsible for cigarette smoke-induced inflammation. We applied cigarette smoke water extract (CSE) to primary human lung fibroblasts and found that CSE significantly increased CXC chemokine IL-8 production. ⋯ Using HSP70 small interfering RNA, we confirmed that CSE-induced chemokine production was dependent on heat shock protein expression. Further investigation showed that CSE could also stimulate early growth response-1 (EGR-1) in an ERK-dependent manner and that the expression of HSP70 was EGR-1 dependent. In view of these findings, we hypothesize that the MAPK-EGR-1-HSP70 pathway regulates the cigarette smoke-induced inflammatory process.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2007
Acute alcohol intoxication increases interleukin-18-mediated neutrophil infiltration and lung inflammation following burn injury in rats.
In this study, we examined whether IL-18 plays a role in lung inflammation following alcohol (EtOH) and burn injury. Male rats ( approximately 250 g) were gavaged with EtOH to achieve a blood EtOH level of approximately 100 mg/dl before burn or sham injury ( approximately 12.5% total body surface area). Immediately after injury, rats were treated with vehicle, caspase-1 inhibitor AC-YVAD-CHO to block IL-18 production or with IL-18 neutralizing anti-IL-18 antibodies. ⋯ Furthermore, administration of anti-neutrophil antiserum also attenuated the increase in lung MPO activity and edema, but did not prevent the increase in IL-18 levels following EtOH and burn injury. These findings suggest that acute EtOH intoxication before burn injury upregulates IL-18, which in turn contributes to increased neutrophil infiltration. Furthermore, the presence of neutrophils appears to be critical for IL-18-meditaed increased lung tissue edema following a combined insult of EtOH and burn injury.