American journal of physiology. Lung cellular and molecular physiology
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2005
HMGB1 contributes to the development of acute lung injury after hemorrhage.
High mobility group box 1 (HMGB1) is a novel late mediator of inflammatory responses that contributes to endotoxin-induced acute lung injury and sepsis-associated lethality. Although acute lung injury is a frequent complication of severe blood loss, the contribution of HMGB1 to organ system dysfunction in this setting has not been investigated. In this study, HMGB1 was detected in pulmonary endothelial cells and macrophages under baseline conditions. ⋯ Blockade of HMGB1 by administration of anti-HMGB1 antibodies prevented hemorrhage-induced increases in nuclear translocation of NF-kappa B in the lungs and pulmonary levels of proinflammatory cytokines, including keratinocyte-derived chemokine, IL-6, and IL-1 beta. Similarly, both the accumulation of neutrophils in the lung as well as enhanced lung permeability were reduced when anti-HMGB1 antibodies were injected after hemorrhage. These results demonstrate that hemorrhage results in increased HMGB1 expression in the lungs, primarily through neutrophil sources, and that HMGB1 participates in hemorrhage-induced acute lung injury.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · May 2005
Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport.
Neutrophil elastase is a serine protease that is abundant in the airways of individuals with cystic fibrosis (CF), a genetic disease manifested by excessive airway Na(+) absorption and consequent depletion of the airway surface liquid layer. Although endogenous epithelium-derived serine proteases regulate epithelial Na(+) transport, the effects of neutrophil elastase on epithelial Na(+) transport and epithelial Na(+) channel (ENaC) activity are unknown. Low micromolar concentrations of human neutrophil elastase (hNE) applied to the apical surface of a human bronchial cell line (16HBE14o-/beta gamma) increased Na(+) transport about twofold. ⋯ However, no enzyme effects were observed on basally active ENaCs. Trypsin exposure following hNE revealed no additional increase in amiloride-sensitive short-circuit current or in ENaC activity, suggesting these enzymes share a common mode of action for increasing Na(+) transport, likely through proteolytic activation of ENaC. The hNE-induced increase of near-silent ENaC activity in CF airways could contribute to Na(+) hyperabsorption, reduced airway surface liquid height, and dehydrated mucus culminating in inefficient mucociliary clearance.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Apr 2005
Anti-inflammatory response is associated with mortality and severity of infection in sepsis.
Using a murine model of sepsis, we found that the balance of tissue pro- to anti-inflammatory cytokines directly correlated with severity of infection and mortality. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Liver tissue was analyzed for levels of IL-1beta, IL-1 receptor antagonist (IL-1ra), tumor necrosis factor (TNF)-alpha, and soluble TNF receptor 1 by ELISA. ⋯ These studies show that the initial tissue proinflammatory response to sepsis is followed by an anti-inflammatory response. The anti-inflammatory phase is associated with increased bacterial load and mortality. These data suggest that it is the timing and magnitude of the anti-inflammatory response that predicts severity of infection in a murine model of sepsis.
-
Am. J. Physiol. Lung Cell Mol. Physiol. · Mar 2005
In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia-induced DNA damage through MAP kinase signaling.
Inosine, a naturally occurring purine with anti-inflammatory properties, was assessed as a possible modulator of hyperoxic damage to the pulmonary alveolar epithelium. Rats were treated with inosine, 200 mg/kg ip, twice daily during 48-h exposure to >90% oxygen. The alveolar epithelial type 2 cells (AEC2) were then isolated and cultured. ⋯ ERK1/2 was activated both in freshly isolated and 24-h-cultured AEC2 by in vivo inosine treatment, whereas blockade of the MAPK pathway in vitro reduced the protective effect of in the vivo inosine treatment. Together, the data suggest that inosine treatment during hyperoxic exposure results in protective signaling mediated through pathways downstream of MEK. Thus inosine may deserve further evaluation for its potential to reduce hyperoxic damage to the pulmonary alveolar epithelium.