American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Oct 2011
SR59230A, a beta-3 adrenoceptor antagonist, inhibits ultradian brown adipose tissue thermogenesis and interrupts associated episodic brain and body heating.
Brown adipose tissue (BAT) thermogenesis occurs episodically in an ultradian manner approximately every 80-100 min during the waking phase of the circadian cycle, together with highly correlated increases in brain and body temperatures, suggesting that BAT thermogenesis contributes to brain and body temperature increases. We investigated this in conscious Sprague-Dawley rats by determining whether inhibition of BAT thermogenesis via blockade of beta-3 adrenoceptors with SR59230A interrupts ultradian episodic increases in brain and body temperatures and whether SR59230A acts on BAT itself or via sympathetic neural control of BAT. Interscapular BAT (iBAT), brain, and body temperatures, tail artery blood flow, and heart rate were measured in unrestrained rats. ⋯ In anesthetized rats, SR59230A reduced cooling-induced increases in iBAT temperature without affecting cooling-induced increases in iBAT sympathetic nerve discharge. Inhibition of BAT thermogenesis by SR59230A, thus, reflects direct blockade of beta-3 adrenoceptors in BAT. Interruption of episodic ultradian increases in body and brain temperature by SR59230A suggests that BAT thermogenesis makes a substantial contribution to these increases.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2011
Cortical activation and lamina terminalis functional connectivity during thirst and drinking in humans.
The pattern of regional brain activation in humans during thirst associated with dehydration, increased blood osmolality, and decreased blood volume is not known. Furthermore, there is little information available about associations between activation in osmoreceptive brain regions such as the organum vasculosum of the lamina terminalis and the brain regions implicated in thirst and its satiation in humans. ⋯ Regions implicated in the experience of thirst were identified including cingulate cortex, prefrontal cortex, striatum, parahippocampus, and cerebellum. Furthermore, the correlation of rCBF between the ventral lamina terminalis and the cingulate cortex and insula was different for the states of thirst and recent drinking, suggesting that functional connectivity of the ventral lamina terminalis is a dynamic process influenced by hydration status and ingestive behavior.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Sep 2011
Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.
Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. ⋯ Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice (P < 0.05) but was not different in PF-354-treated tumor-bearing mice (P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jul 2011
Effect of a 5-HT1A receptor agonist (8-OH-DPAT) on external urethral sphincter activity in a rat model of pudendal nerve injury.
Although serotonergic agents have been used to treat patients with stress urinary incontinence, the characteristics of the external urethral sphincter (EUS) activity activated by 5-HT receptors have not been extensively studied. This study examined the effects of the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the EUS-electromyography and resistance of the urethra in a rat model with bilateral pudendal nerve injury (BPNI). Two measurements were utilized to assess the effects of the drug on bladder and urethral functions: the simultaneous recordings of transvesical pressure under isovolumetric conditions [isovolumetric intravesical pressure (IVP)] and urethral perfusion pressure, and the simultaneous recordings of IVP during continuously isotonic transvesical infusion with an open urethra (isotonic IVP) and EUS-electromyography. ⋯ The urethral perfusion pressure and leak point pressure measurements of BPNI rats reveal that 8-OH-DPAT significantly increased urethral resistance during the bladder storage phase, yet decreased resistance during the voiding phase. The entire EUS burst period was significantly prolonged, within which the average silent period increased and the frequency of burst discharges decreased. 8-OH-DPAT also improved the voiding efficiency, as evidenced by the detection of decreases in the contraction amplitude and residual volume, with increases in contraction duration and voided volume. These findings suggest that 8-OH-DPAT not only improved continence function, but also elevated the voiding function in a BPNI rat model.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Jun 2011
Clinical TrialEffect of helium breathing on intercostal and quadriceps muscle blood flow during exercise in COPD patients.
Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. ⋯ In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise.