American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2010
Randomized Controlled Trial Multicenter StudyVentilatory restraint of sympathetic activity during chemoreflex stress.
The within-breath modulation of muscle sympathetic nerve activity (MSNA) is well established, with greater activity occurring during expiration and less during inspiration. Whether ventilation per se affects the longer-term (i.e., minute-to-minute) regulation of MSNA has not been determined. We sought to define the specific role of ventilation in regulating sympathetic activation during chemoreflex activation, where both ventilation and MSNA are increased. ⋯ The augmented sympathetic response during apneas was associated with a larger pressor response and total peripheral resistance compared with rebreathing. These data demonstrate that ventilation per se restrains sympathetic activation during chemoreflex activation. Further, the augmented sympathetic response during apneas was associated with greater cardiovascular stress and may be relevant to the cardiovascular pathology associated with sleep-disordered breathing.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2010
Comparative StudyAdaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice.
We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to -8.3°C and -18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. ⋯ Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute to adaptive thermogenesis during cold acclimation.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2010
Complement factor 3 deficiency attenuates hemorrhagic shock-related hepatic injury and systemic inflammatory response syndrome.
Although complement activation is known to occur in the setting of severe hemorrhagic shock and tissue trauma (HS/T), the extent to which complement drives the initial inflammatory response and end-organ damage is uncertain. In this study, complement factor 3-deficient (C3(-/-)) mice and wild-type control mice were subjected to 1.5-h hemorrhagic shock, bilateral femur fracture, and soft tissue injury, followed by 4.5-h resuscitation (HS/T). C57BL/6 mice were also given 15 U of cobra venom factor (CVF) or phosphate-buffered saline injected intraperitoneally, followed by HS/T 24 h later. ⋯ C3(-/-) mice subjected to HS/T had higher levels of heme oxygenase-1, which has been associated with tissue protection in HS models. Our data indicate that complement activation contributes to inflammatory pathways and liver damage in HS/T. This suggests that targeting complement activation in the setting of severe injury could be useful.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Oct 2010
Structural neuroplasticity following T5 spinal cord transection: increased cardiac sympathetic innervation density and SPN arborization.
When the spinal cord is injured at or below thoracic level 5 (T5), cardiovascular control is markedly unbalanced as the heart and blood vessels innervated by upper thoracic segments remain under brain stem control, whereas the vasculature of the lower body is affected by unregulated spinal reflexes. Importantly, the regulation of heart rate and cardiac function is abnormal after spinal cord injury (SCI) at T5 because sympathetic outflow to the heart is increased. An increase in tonic sympathetic outflow may be attributable to multiple mechanisms, such as increases in cardiac sympathetic innervation density, altered morphology of stellate ganglia neurons, and/or structural neuroplasticity of cardiac sympathetic preganglionic neurons (SPNs). ⋯ In intact and paraplegic (9 wk posttransection) rats, LV NGF content (ELISA), LV sympathetic innervation density (tyrosine hydroxylase immunohistochemistry), and cardiac SPN arborization (cholera toxin B immunohistochemistry and Sholl Analysis) were determined. Paraplegia, compared with intact, significantly increased LV NGF content, LV sympathetic innervation density, and cardiac SPN arborization. Thus, altered autonomic behavior following SCI is associated with structural neuroplastic modifications.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Aug 2010
Estimating changes in volume-weighted mean body temperature using thermometry with an individualized correction factor.
This study investigated whether the estimation error of volume-weighted mean body temperature (DeltaT(b)) using changes in core and skin temperature can be accounted for using personal and environmental parameters. Whole body calorimetry was used to directly measure DeltaT(b) in an Experimental group (EG) of 36 participants (24 males, 12 females) and a Validation group (VG) of 20 (9 males, 11 females) throughout 90 min of cycle ergometry at 40 degrees C, 30% relative humidity (RH) (n = 9 EG, 5 VG); 30 degrees C, 30% RH (n = 9 EG, 5 VG); 30 degrees C, 60% RH (n = 9 EG, 5 VG); and 24 degrees C, 30% RH (n = 9 EG, 5 VG). The core of the two-compartment thermometry model was represented by rectal temperature and the shell by a 12-point mean skin temperature (DeltaT(sk)). ⋯ The subsequent regression models were used to predict the thermometric estimation error (X(0_pred)) for each individual in the VG. The value estimated for X(0_pred) was then added to the DeltaT(b) estimated using the two-compartment thermometry models yielding an adjusted estimation (DeltaT(b)_(adj)) for the individuals in the VG. When comparing DeltaT(b)_(adj) to the DeltaT(b) derived from calorimetry in the VG, the best performing model used a core/shell weighting of 0.66/0.34 describing 74%, 84%, and 82% of the variation observed in DeltaT(b) from calorimetry after 30, 60, and 90 min, respectively.