American journal of physiology. Regulatory, integrative and comparative physiology
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Dec 2008
Comparative StudyPlacental HIFs as markers of cerebral hypoxic distress in fetal mice.
Reduced oxygen supply during the pre- and perinatal period often leads to acquired neonatal brain damage. So far, there are no reliable markers available to assess the hypoxic cerebral damage and the resulting prognosis during the immediate postnatal period. Thus we aimed to determine whether the hypoxia-inducible transcription factors (HIF-1 and HIF-2) and/or their target genes in the placenta represent reliable indicators of hypoxic distress of the developing brain during systemic hypoxia at the end of gestation. ⋯ Notably, hypoxia did not affect expression of the HIF target genes inducible nitric oxide synthase and GLUT-1. Taken together, at gestational day 20, systemic hypoxia led to upregulation of HIF-alpha in mouse brain that was temporally paralleled in placenta, implying that alpha-subunits of both HIF-1 and HIF-2 are indeed early markers of hypoxic distress in vivo. If our data reflect the situation in humans, analysis of the placenta will allow early identification of the hypoxic brain distress occurring near birth.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2008
Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity.
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. ⋯ Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2008
C2 spinal cord stimulation induces dynorphin release from rat T4 spinal cord: potential modulation of myocardial ischemia-sensitive neurons.
During myocardial ischemia, the cranial cervical spinal cord (C1-C2) modulates the central processing of the cardiac nociceptive signal. This study was done to determine 1) whether C2 SCS-induced release of an analgesic neuropeptide in the dorsal horn of the thoracic (T4) spinal cord; 2) if one of the sources of this analgesic peptide was cervical propriospinal neurons, and 3) if chemical inactivation of C2 neurons altered local T4 substance P (SP) release during concurrent C2 SCS and cardiac ischemia. Ischemia was induced by intermittent occlusion of the left anterior descending coronary artery (CoAO) in urethane-anesthetized Sprague-Dawley rats. ⋯ Injection of the kappa-opioid antagonist, nor-binaltorphimine, into T4 also allowed an increased SP release during SCS and CoAO. CoAO increased the number of Fos-positive neurons in T4 dorsal horns but not in the intermediolateral columns (IML), while SCS (either alone or during CoAO) minimized this dorsal horn response to CoAO alone, while inducing T4 IML neuronal recruitment. These results suggest that activation of cervical propriospinal pathways induces DYN release in the thoracic spinal cord, thereby modulating nociceptive signals from the ischemic heart.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2008
Differential effects of airway afferent nerve subtypes on cough and respiration in anesthetized guinea pigs.
The hypothesis that respiratory reflexes, such as cough, reflect the net and often opposing effects of activation of multiple afferent nerve subpopulations throughout the airways was evaluated. Laryngeal and tracheal mucosal challenge with either citric acid or mechanical probing reliably evoked coughing in anesthetized guinea pigs. No other stimulus reliably evoked coughing in these animals, regardless of route of administration and despite some profound effects on respiration. ⋯ Histamine, which activates intrapulmonary rapidly adapting receptors but not airway or lung C-fibers or tracheal bronchial cough receptors induced bronchospasm and tachypnea, but no coughing. The results indicate that the reflexes initiated by stimuli thought to be selective for some afferent nerve subtypes will likely depend on the net and potentially opposing effects of multiple afferent nerve subpopulations throughout the airways. The data also provide further evidence that the afferent nerves regulating cough in anesthetized guinea pigs are distinct from either C-fibers or intrapulmonary rapidly adapting receptors.
-
Am. J. Physiol. Regul. Integr. Comp. Physiol. · Nov 2008
Effects of chronic expression of the HIV-induced protein, transactivator of transcription, on circadian activity rhythms in mice, with or without morphine.
Patients with human immunodeficiency virus (HIV) infection exhibit changes in sleep patterns, motor disorders, and cognitive dysfunction; these symptoms may be secondary to circadian rhythm abnormalities. Studies in mice have shown that intracerebral injection of an HIV protein, transactivator of transcription (Tat), alters the timing of circadian rhythms in a manner similar to light. Therefore, we tested the hypothesis that chronic Tat expression alters circadian rhythms, especially their entrainment to a light-dark (LD) cycle, by using transgenic mice in which Tat expression in the brain was induced via a doxycycline (DOX)-sensitive, glial fibrillary-associated, protein-restricted promoter. ⋯ Tat induction significantly decreased wheel running but did not affect entrainment to the normal or shifted LD cycle. Morphine decreased wheel running without altering the phase angle of entrainment, and the drug's effects were independent of Tat induction. In conclusion, these findings suggest that chronic brain expression of Tat decreases locomotor activity and the amplitude of circadian rhythms, but does not affect photic entrainment or reentrainment of the murine circadian pacemaker.